
BINARY QUADRATIC FORMS IN DIFFERENCE SETS

ALEX RICE

Abstract. We show that if h(x, y) = ax2 + bxy + cy2 ∈ Z[x, y] satisfies ∆(h) = b2 − 4ac 6= 0, then any
subset of {1, 2, . . . , N} lacking nonzero differences in the image of h has size at most a constant depending on

h times N exp(−c
√

logN), where c = c(h) > 0. We achieve this goal by adapting an L2 density increment

strategy previously used to establish analogous results for sums of one or more single-variable polynomials.
Our exposition is thorough and self-contained, in order to serve as an accessible gateway for readers who

are unfamiliar with previous implementations of these techniques.

1. Introduction

Established independently by Sárközy and Furstenberg during the 1970s, settling a question of Lovász,
it is a well-studied fact that any set of integers of positive upper density necessarily contains two distinct
elements that differ by a perfect square. Equivalently, if A ⊆ N contains no such pair, then

lim
N→∞

|A ∩ [1, N ]|
N

= 0.

Here we use [1, N ] to denote {1, 2, . . . , N} and |X| to denote the size of a finite set X. Furstenberg [2]
achieved this result qualitatively via ergodic theory, specifically his correspondence principle, but obtained
no information on the rate at which the density must decay, while Sárközy [20] employed a Fourier analytic
density increment strategy to show that if A ⊆ [1, N ] has no square differences, then

(1)
|A|
N
�
(

(log logN)2

logN

)1/3

.

Throughout the paper we use log to denote the natural logarithm, and we use “�” to denote “less than
a constant times”, with subscripts indicating on what parameters, if any, the implied constant depends.
Sárközy’s argument was driven by the Hardy-Littlewood circle method, and was inspired by Roth’s [14]
proof that sets of positive upper density contain three-term arithmetic progressions.

Using a more intricate Fourier analytic argument, Pintz, Steiger, and Szemerédi [13] improved (1) to

(2) |A| � N(logN)−c log log log logN ,

with c = 1/12. While more elementary Fourier analytic proofs [3, 10] and a Fourier-free density increment
proof [4] have also been discovered, it is versions of these two Fourier analytic attacks that have yielded the
best quantitative information. In the ensuing decades, these two methods have been refined and applied
to other sets of prohibited differences, such as more general polynomial images [1, 22, 9, 5], shifted primes
[21, 8, 19], polynomial curves in higher-dimensional integer lattices [11], and images of the primes under
polynomials [7, 17].

With regard to sums of one or more single-variable polynomials, the author [15] pushed these two methods
to their breaking points. In the case of one single-variable polynomial, if h ∈ Z[x] has degree k ≥ 2 and h(N)
contains a multiple of q for every q ∈ N, known as an intersective polynomial, then any set A ⊆ [1, N ] with no
nonzero differences in the image of h satisfies (2) for any c < (log((k2 + k)/2))−1, with the implied constant
depending on h and c. The intersective condition is necessary to force any density decay, as otherwise one
can take A = qN if h(N) misses qZ, and in that sense this is a maximal extension of the elaborate techniques
developed in [13] and [1].
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Further, if we allow the additional degree of freedom of a second polynomial, then the more straightforward
density increment approach yields density bounds that are even better than (2), as described below.

Theorem A ([15]). Suppose g, h ∈ Z[x] are nonzero intersective polynomials and A ⊆ [1, N ]. If

a− a′ 6= g(m) + h(n)

for all distinct pairs a, a′ ∈ A and all m,n ∈ N, then

|A| �g,h Ne
−c(logN)µ ,

where c = c(g, h) > 0, µ = µ(deg(g),deg(h)) > 0, and µ(2, 2) = 1/2.

As a notable example, Theorem A establishes an upper bound of exp(−c
√

logN) for the density of subsets
of [1, N ] lacking differences that are the sum of two squares. There is also a brief discussion of sums of three
or more single-variable polynomials at the end of [15], but the improvements in density bounds are modest
as exp(−c

√
logN) arises as a natural limit of the method, a fact that we discuss in Section 2.3.

While the generality of Theorem A is pleasing, prohibited differences of the form g(m) + h(n) can be
thought of as the diagonal special case of differences of the form h(m,n) where h ∈ Z[x, y]. Of course, if

h(x, y) = h̃(g(x, y)) for some g ∈ Z[x, y] and h̃ ∈ Z[x] with deg(h̃) ≥ 2, then the image of h is contained

in the image of h̃, in which case we could not hope to improve on the original setting of one single-variable
polynomial. However, in other cases, we expect that the freedom of two variables should allow for improved
density bounds. It is with this expectation in mind that we gently wade into the arena of potentially non-
diagonal two-variable polynomials by exploring the following natural generalization of the aforementioned
special case m2 + n2.

Definition. h ∈ Z[x, y] is called a binary quadratic form if

h(x, y) = ax2 + bxy + cy2

for some a, b, c ∈ Z. Further, we define the discriminant of h by

∆(h) = b2 − 4ac,

noting that h(x, y) = d(rx+ sy)2 for some d, r, s ∈ Z if and only if ∆(h) = 0.

Our main result is the following, which says that under the necessary restriction that a binary qua-
dratic form does not collapse into a dilated perfect square, we achieve the same density bounds previously
established in the diagonal case, which are likely the best possible for our chosen method.

Theorem 1.1. Suppose h ∈ Z[x, y] is a binary quadratic form with ∆(h) 6= 0. If A ⊆ [1, N ] with

a− a′ 6= h(m,n)

for all distinct pairs a, a′ ∈ A and all m,n ∈ N, then

|A| �h Ne
−c
√

logN ,

where c = c(h) > 0.

We note that the image of every nonzero binary quadratic form contains a dilation of the squares, and
hence our result is only material because the established density bound is better than (2). Our goal for the
remainder of the paper is twofold: to establish Theorem 1.1, which we hope will serve as a starting point for
the application of these methods to more general polynomials in several variables, and to provide thorough
and self-contained exposition of all of the components of this iteration scheme for those unfamiliar with its
previous applications, such as the original case of the squares.
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2. Main Iteration Lemma: Deducing Theorem 1.1

The principle behind a density increment strategy is that a set which lacks the desired arithmetic structure
should spawn a new, significantly denser subset of a slightly smaller interval with an inherited lack of
arithmetic structure. Iterating this procedure enough times for the density to reach 1 provides an upper
bound on the density of the original set.

For this section, we fix a binary quadratic form h ∈ Z[x, y] with ∆(h) 6= 0, and we let

I(h) = {h(m,n) : m,n ∈ N} \ {0}.
Our iteration scheme is encapsulated by the following lemma, from which we quickly deduce Theorem 1.1.

Lemma 2.1. Suppose A ⊆ [1, N ] with |A| = δN and δ ≥ N−1/20. If (A − A) ∩ I(h) = ∅, then there exists
A′ ⊆ [1, N ′] with |A′| = δ′N ′ and a constant c = c(h) > 0 with

N ′ �h δ
4N, δ′ ≥ (1 + c)δ, and (A′ −A′) ∩ I(h) = ∅.

2.1. Proof of Theorem 1.1. Suppose A ⊆ [1, N ] with |A| = δN and (A − A) ∩ I(h) = ∅. Setting
A0 = A, N0 = N , and δ0 = δ, Lemma 2.1 yields, for each m, a set Am ⊆ [1, Nm] with |Am| = δmNm and
(Am −Am) ∩ I(h) = ∅ satisfying

(3) Nm ≥ cδ4Nm−1 ≥ (cδ4)mN

and

(4) δm ≥ (1 + c)δm−1 ≥ (1 + c)mδ

as long as

(5) δm ≥ N−1/20
m .

By (4), we see that the density δm will surpass 1, and hence (5) must fail, for m = C log(δ−1). In particular,
by (3) we have

δ ≤ (cδ4)−C log(δ−1)N−1/20,

which can be rearranged to

N ≤ eC log2(δ−1)

and hence implies

δ �h e
−c
√

logN ,

as required. �

2.2. Roadmap for the remainder of the paper. Our task is is now completely reduced to a proof of
Lemma 2.1, the two major components of which are described below.

(i) The condition (A − A) ∩ I(h) = ∅ represents unexpected, nonuniform behavior, which we expect
to be detectable in the Fourier analytic behavior of A. More specifically, we use orthogonality of
characters and adaptations of standard exponential sum estimates to locate a single small denomi-
nator q such that the Fourier transform of the characteristic function of A, translated to have mean
value zero, has substantial L2 concentration near rationals with denominator q. The Fourier analytic
infrastructure is introduced in Section 3.1, the proof of this component is carried out in Section 4.2,
and the required exponential sum estimates are exposed in great detail in Section 5.

(ii) The substantial L2 concentration of the transform of the translated characteristic function of A near
rationals with a particular denominator q indicates a correlation of A with a linear phase function.
In particular, we show that this implies that A has significantly increased relative density on a long
arithmetic progression P of step size q. Since this implication has nothing to do with h, or any other
assumptions about A, we prove a general version preemptively in Section 3.2. Finally, by shifting
and rescaling the intersection of A with a subprogression of P of step size q2, we obtain our new,
denser set A′ with (A′ − A′) ∩ I(h) = ∅. The complete deduction of Lemma 2.1 from these two
components is carried out in Section 4.1.
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2.3. A discussion of novelty and bounds. As indicated in the introduction, the procedure outlined in
Section 2.2, though refined over the years, goes back to Sárközy in the 1970s. The improvement in bounds
in Theorem 1.1 and Theorem A, as compared to the case of one single-variable polynomial, comes from
the details of the numerology in Lemma 2.1, most notably the size of the density increment δ′ ≥ (1 + c)δ.
This effectively optimal increase in density is facilitated by the quality of the exponential sum estimates
mentioned in item (i) above.

More specifically, the size of the density increment can be traced to the level of decay achieved in normal-
ized complete local exponential sums. In the original setting of square differences, for example, the relevant
decay comes from the standard estimate

(6)

∣∣∣∣∣1q
q−1∑
r=0

e2πir2a/q

∣∣∣∣∣� q−1/2

for (a, q) = 1, which ultimately leads to a density increment δ′ ≥ δ + cδ2. Substituting this increment size,
and other minor necessary modifications, into the proof in Section 2.1 leads to the upper bound

δ � log logN

logN
,

which is better than Sárközy’s original result (1). The reader may refer to [12] or [16] for full expositions of
this refinement in the cases of squares, shifted primes, and, in the latter case, intersective polynomials.

In the case of sums of two squares, covered in Theorem A, the relevant decay comes from the analogous
two-variable sum that then splits, allowing one to use the same estimate (6) to conclude∣∣∣∣∣ 1

q2

q−1∑
r,s=0

e2πi(r2+s2)a/q

∣∣∣∣∣ =

∣∣∣∣∣1q
q−1∑
r=0

e2πir2a/q

∣∣∣∣∣
2

� q−1

for (a, q) = 1, which is good enough to get the optimal density increment. The novelty of Theorem 1.1 is
rooted in the fact that when ∆(h) 6= 0, we get the same level of decay, namely∣∣∣∣∣ 1

q2

q−1∑
r,s=0

e2πih(r,s)a/q

∣∣∣∣∣�h q
−1

for (a, q) = 1, even though the sum no longer necessarily splits.

In order to improve on the bound exp(−c
√

logN) using this approach, for any fixed set of prohibited
differences, one of two components of the numerology of Lemma 2.1 must be improved: either the ratio
N ′/N must decay more slowly than any power of δ, or the ratio δ′/δ must tend to infinity, as δ → 0, neither
of which appear feasible in any nontrivial context. However, the question of whether the known upper bounds
are even remotely sharp remains completely open in all of the aforementioned cases. For a more detailed
discussion of lower bounds, constructions, and conjectures, the reader may refer to Section 1.4 of [15].

3. Preliminaries

3.1. Fourier analysis and the circle method on Z. We embed our finite sets in Z, on which we utilize the

discrete Fourier transform. Specifically, for a function F : Z→ C with finite support, we define F̂ : T→ C,
where T denotes the circle parametrized by the interval [0, 1] with 0 and 1 identified, by

F̂ (α) =
∑
n∈Z

F (n)e−2πinα.

In this finite support context, Plancherel’s Identity

(7)
∑
n∈Z
|F (n)|2 =

∫ 1

0

|F̂ (α)|2dα
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is a direct consequence of the orthogonality relation

(8)

∫ 1

0

e2πinαdα =

{
1 if n = 0

0 if n ∈ Z \ {0}.

Given N ∈ N and a set A ⊆ [1, N ] with |A| = δN , we examine the Fourier analytic behavior of A by
considering the balanced function, fA, defined by

fA = 1A − δ1[1,N ].

We analyze f̂A, and other arising exponential sums, using the Hardy-Littlewood circle method, decomposing
the frequency space into two components: the set of points on the circle that are close to rationals with
small denominator, and the complement.

Definition. Given N ∈ N and η > 0, we define, for each q ∈ N and a ∈ [1, q],

Ma/q = Ma/q(N, η) =

{
α ∈ T : |α− a

q
| < 1

η2N

}
, Mq =

⋃
(a,q)=1

Ma/q, and M′
q =

⋃
r|q

Mq =

q⋃
a=1

Ma/q.

We then define M, the major arcs and m, the minor arcs, by

M =

η−1⋃
q=1

Mq, m = T \M.

We note that if η2N > 2Q2, then

(9) Ma/q ∩Mb/r = ∅
whenever a/q 6= b/r and q, r ≤ Q.

3.2. Density increment lemma. The following standard result shows that for A ⊆ [1, N ], L2 concentration

of f̂A near rationals with a particular denominator q implies increased relative density on a long arithmetic
progression of step size q, as described in item (ii) in Section 2.2.

Lemma 3.1. Suppose A ⊆ [1, N ] with |A| = δN . If q ∈ N, σ, η > 0, and∫
M′q

|f̂A(α)|2dα ≥ σδ2N,

then there exists an arithmetic progression

P = {x+ `q : 1 ≤ ` ≤ L}
with qL� min{σ, η2}N and |A ∩ P | ≥ (1 + σ/32)δL.

Proof. Suppose A ⊆ [1, N ] with |A| = δN , σ, η > 0. Suppose further that

(10)

∫
M′q

|f̂A(α)|2dα ≥ σδ2N,

and let P = {q, 2q, . . . , Lq} with L = bmin{σ, η2}N/128qc. We will show that some translate of P satisfies
the conclusion of Lemma 3.1. We note that for α ∈ [0, 1],

(11) |1̂P (α)| =
∣∣∣ L∑
`=1

e−2πi`qα
∣∣∣ ≥ L− L∑

`=1

|1− e−2πi`qα| ≥ L− 2πL2‖qα‖,

where ‖ · ‖ denotes the distance to the nearest integer. Further, if α ∈M′
q, then

(12) ‖qα‖ ≤ q

η2N
≤ 1

4πL
.

Therefore, by (11) and (12) we have

(13) |1̂P (α)| ≥ L/2 for all α ∈M′
q.
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By (10), (13), and Plancherel’s Identity (7) we see

(14) σδ2N ≤
∫
M′q

|f̂A(α)|2dα ≤ 4

L2

∫ 1

0

|f̂A(α)|2|1̂P (α)|2dα =
4

L2

∑
n∈Z
|fA ∗ 1̃P (n)|2,

where 1̃P (n) = 1P (−n) and

(15) fA ∗ 1̃P (n) =
∑
m∈Z

fA(m)1P (m− n) = |A ∩ (P + n)| − δ|(P + n) ∩ [1, N ]|.

We now take advantage of the fact that fA, and consequently fA ∗ 1̃P , has mean value zero. In other words,

(16)
∑
n∈Z

fA ∗ 1̃P (n) = 0.

As with any real valued function, we can write

(17) |fA ∗ 1̃P | = 2(fA ∗ 1̃P )+ − fA ∗ 1̃P ,

where (fA ∗ 1̃P )+ = max{fA ∗ 1̃P , 0}.

For the purposes of proving Lemma 3.1, we can assume that fA ∗ 1̃P (n) ≤ 2δL for all n ∈ Z, as otherwise
the progression P + n would more than satisfy the conclusion. Combined with the trivial upper bound

fA ∗ 1̃P (n) ≥ −δL, we can assume

(18) |fA ∗ 1̃P (n)| ≤ 2δL for all n ∈ Z.

By (14), (16), (17), and (18), we have

(19)
∑
n∈Z

(fA ∗ 1̃P )+(n) =
1

2

∑
n∈Z
|fA ∗ 1̃P | ≥

1

4δL

∑
n∈Z
|fA ∗ 1̃P |2 ≥

σδNL

16
.

By (15), we see that fA ∗ 1̃P (n) = 0 if n /∈ [−qL,N ]. Letting E = {n ∈ Z : P + n ⊆ [1, N ]} and
F = [−qL,N ] \ E, we see that |F | ≤ 2qL. Therefore, by (18), (19), and the bound 128qL ≤ σN , we have

(20)
∑
n∈E

(fA ∗ 1̃P )+(n) ≥ σδNL

16
− 2δL|F | ≥ σδNL

16
− 4qδL2 >

σδNL

32
.

Recalling that |E| ≤ N and fA ∗ 1̃P (n) = |A ∩ (P + n)| − δL for all n ∈ E, we have that there exists n ∈ Z
with

|A ∩ (P + n)| ≥ (1 + σ/32)δL,

as required. �

4. L2 Concentration

For this section, we once again fix a binary a quadratic form h ∈ Z[x, y] with ∆(h) 6= 0, and let

I(h) = {h(m,n) : m,n ∈ N} \ {0}.

The following result makes precise the implication outlined in item (i) in Section 2.2, in which the condition

(A−A)∩ I(h) = ∅ forces substantial L2 concentration of f̂A near rationals with a single small denominator.
Combining this with Lemma 3.1, we then quickly deduce Lemma 2.1.

Lemma 4.1. Suppose A ⊆ [1, N ] with |A| = δN , and let η = c0δ for a sufficiently small constant c0 =
c0(h) > 0. If (A − A) ∩ I(h) = ∅, δ ≥ N−1/20, and |A ∩ (N/9, 8N/9)| ≥ 3δN/4, then there exists q ≤ η−1

such that ∫
M′q

|f̂A(α)|2dα�h δ
2N.
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4.1. Proof of Lemma 2.1. Suppose A ⊆ [1, N ], |A| = δN , δ ≥ N−1/20, and (A−A) ∩ I(h) = ∅.
If |A ∩ (N/9, 8N/9)| < 3δN/4, then max{|A ∩ [1, N/9]|, |A ∩ [8N/9, N ]|} > δN/8. In other words, A has
density at least 9δ/8 on one of these intervals.

Otherwise, Lemmas 4.1 and 3.1 apply, so in either case, letting η = c0δ, there exists q ≤ η−1 and an
arithmetic progression

P = {x+ `q : 1 ≤ ` ≤ L}
with qL�h δ

2N and |A∩P | ≥ (1+ c)δL. Partitioning P into subprogressions of step size q2, the pigeonhole
principle yields a progression

P ′ = {y + `q2 : 1 ≤ ` ≤ N ′} ⊆ P
with N ′ ≥ L/2q and |A ∩ P ′| ≥ (1 + c)δN ′. This allows us to define a set A′ ⊆ [1, N ′] by

A′ = {` ∈ [1, N ′] : y + `q2 ∈ A},

which clearly satisfies |A′| ≥ (1+c)δN ′ and N ′ �h δ
2N/q2 �h δ

4N . Moreover, since q2h(m,n) = h(qm, qn),
A′ inherits the lack of h(m,n) differences from A. �

Our task is now completely reduced to a proof of Lemma 4.1.

4.2. Proof of Lemma 4.1. Suppose A ⊆ [1, N ] with |A| = δN , and let η = c0δ.

We let J = |b1|+ |b2|+ |b3|, M =
√
N/9J , Z = {(m,n) ∈ [1,M ]2 : h(m,n) = 0}, and Λ = [1,M ]2 \ Z.

We note that

(21) |Z| �h M.

If (A−A) ∩ I(h) = ∅, then since h(Λ) ⊆ [−N/9, N/9], we see that∑
x∈Z

(m,n)∈Λ

fA(x)fA(x+ h(m,n)) =
∑
x∈Z

(m,n)∈Λ

1A(x)1A(x+ h(m,n))− δ
∑
x∈Z

(m,n)∈Λ

1A(x)1[1,N ](x+ h(m,n))

−δ
∑
x∈Z

(m,n)∈Λ

1[1,N ](x− h(m,n))1A(x) + δ2
∑
x∈Z

(m,n)∈Λ

1[1,N ](x)1[1,N ](x+ h(m,n))

≤
(
δ2N − 2δ|A ∩ (N/9, 8N/9)|

)
|Λ|.

Therefore, if |A ∩ (N/9, 8N/9)| ≥ 3δN/4, we have

(22)
∑
n∈Z

1≤m≤M

fA(n)fA(x+ h(m,n)) ≤ −δ2N |Λ|/2.

One can check using orthogonality (8) and Plancherel’s Identity (7) that∑
x∈Z

(m,n)∈Λ

fA(x)fA(x+ h(m,n)) =
∑
x,y∈Z

(m,n)∈Λ

fA(x)fA(y)

∫ 1

0

e2πi(x−y+h(m,n))αdα

=

∫ 1

0

(∑
x∈Z

fA(x)e2πixα

)∑
y∈Z

fA(y)e−2πiyα

 ∑
(m,n)∈Λ

e2πih(m,n)α

 dα

=

∫ 1

0

|f̂A(α)|2SM (α)dα+O(δN |Z|),

where

Sx(α) =
∑

1≤m,n≤x

e2πih(m,n)α.
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Combined with (21), (22), and the triangle inequality, this yields

(23)

∫ 1

0

|f̂A(α)|2|SM (α)|dα ≥ δ2NM2/4.

By adapting traditional exponential sum estimates to this two-variable setting, and at one point carefully
exploiting that ∆(h) 6= 0, we have that if δ ≥ N−1/20, then

(24) |SM (α)| �h M
2/q for α ∈Mq, q ≤ η−1,

and

(25) |SM (α)| ≤ CηM2 ≤ δM2/8 for α ∈ m,

provided we choose c0 ≤ 1/8C. We prove and discuss these estimates in detail in Section 5.

By (25) and Plancherel’s Identity (7), we have∫
m

|f̂A(α)|2|SM (α)|dα ≤ δ2NM2/8,

which by (23) yields

(26)

∫
M

|f̂A(α)|2|SM (α)|dα ≥ δ2NM2/8.

By (24) and (26) we have

(27) δ2NM2 �h

η−1∑
q=1

M2

q

∫
Mq

|f̂A(α)|2dα.

We then make use of the following proposition, a more general version of which can be found in Proposition
5.6 of [15], which exploits the more inclusive definition of M′

q as compared with Mq.

Proposition 4.2. If η2N > 2Q2, then

max
q≤Q

∫
M′q

|f̂A(α)|2dα ≥ 1

2

Q∑
q=1

q−1

∫
Mq

|f̂A(α)|2dα.

Proof. By (9) we have

Qmax
q≤Q

∫
M′q

|f̂A(α)|2dα ≥
Q∑
q=1

∫
M′q

|f̂A(α)|2dα

=

Q∑
q=1

∑
r|q

∫
Mr

|f̂A(α)|2dα

=

Q∑
r=1

bQ/rc
∫
Mr

|f̂A(α)|2dα

≥ Q

2

Q∑
r=1

r−1

∫
Mr

|f̂A(α)|2dα,

and the proposition follows. �

Lemma 4.1 then follows immediately from (27) and Proposition 4.2. �
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5. Exponential Sum Estimates

In this section, we carefully adapt traditional exponential sum estimates in order to establish the crucial
upper bounds (24) and (25). For the entirety of the section, we fix a nonzero binary quadratic form

h(x, y) = b1x
2 + b2xy + b3y

2 ∈ Z[x, y].

Unlike in previous sections, we do not make the perpetual assumption that ∆(h) = b22 − 4b1b3 6= 0, but
rather enforce this condition only when necessary.

5.1. Major arc estimates. We begin our pursuit of (24) by establishing an asymptotic formula for the
relevant exponential sum near rationals with small denominator. To achieve this goal, we make multiple
appeals to the following standard formula, which is simply integration by parts applied to an appropriate
Riemann-Stieltjes integral.

Lemma 5.1 (Abel’s Partial Summation Formula). If φ : R → C is continuously differentiable, f : N → C,
F (x) =

∑
1≤n≤x f(n), and M > 0, then∑

1≤n≤M

f(n)φ(n) = F (M)φ(M)−
∫ M

0

F (x)φ′(x)dx.

We now proceed with the asymptotic formula, obtained by applying Lemma 5.1 one variable at a time.

Lemma 5.2. If a, q ∈ N, α = a/q + β, and M > 0, then

SM (α) =
∑

1≤m,n≤M

e2πih(m,n)α = q−2G(a, q)

∫ M

0

∫ M

0

e2πih(x,y)βdxdy +O(qM(1 + JM2β)),

where J = |b1|+ |b2|+ |b3| and

G(a, q) =

q−1∑
r,s=0

e2πih(r,s)a/q.

Proof. For each fixed 1 ≤ m ≤M and y > 0, we see that

(28) Smy (a/q) =
∑

1≤n≤y

e2πih(m,n)a/q =

q−1∑
s=0

e2πih(m,s)a/q |{1 ≤ n ≤ y : n ≡ s mod q}| = y

q
Gm(a, q) +O(q),

where

Gm(a, q) =

q−1∑
s=0

e2πih(m,s)a/q.

Then, letting hy = ∂h
∂y and successively applying Lemma 5.1, (28), and integration by parts, we have

SmM (α) =
∑

1≤n≤M

e2πih(m,n)a/qe2πih(m,n)β

= SmM (a/q)e2πih(m,M)β −
∫ M

0

Smy (a/q)(2πihy(m, y)β)e2πih(m,y)βdy

= q−1Gm(a, q)

(
Me2πih(m,M)β −

∫ M

0

y2πihy(m, y)βe2πih(m,y)βdy

)
+O(q(1 + JM2β))

= q−1Gm(a, q)

∫ M

0

e2πih(m,y)βdy +O(q(1 + JM2β)).

Similarly, summing in m we have

S̃x(a/q) =
∑

1≤m≤x

Gm(a, q) =

q−1∑
r=0

Gr(a, q) |{1 ≤ m ≤ x : m ≡ r mod q}| = x

q
G(a, q) +O(q),
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and, letting hx = ∂h
∂x , we apply the same sequence of steps to see that SM (α) equals

q−1
∑

1≤m≤M

Gm(a, q)

∫ M

0

e2πih(m,y)βdy +O(qM(1 + JM2β))

=q−1

(
S̃M (a/q)

∫ M

0

e2πih(M,y)βdy −
∫ M

0

∫ M

0

S̃x(a/q)(2πihx(x, y)β)e2πih(x,y)βdxdy

)
+O(qM(1 + JM2β))

=q−2G(a, q)

(
M

∫ M

0

e2πih(M,y)βdy −
∫ M

0

∫ M

0

x(2πihx(x, y)β)e2πih(x,y)βdxdy

)
+O(qM(1 + JM2β))

=q−2G(a, q)

∫ M

0

∫ M

0

e2πih(x,y)βdxdy +O(qM(1 + JM2β)),

and the formula is established. �

The crucial denominator q in (24) comes from the following result, previously discussed in Section 2.3, which
is the one and only juncture at which we require ∆(h) 6= 0. This key ingredient, as well as the standard
proof we recreate for Lemma 5.6, rely on a technique known as Weyl differencing, in which we take the
modulus squared of the exponential sum in order to reduce the quadratic dependence in each variable to a
linear dependence.

Lemma 5.3. If ∆(h) 6= 0 and a, q ∈ N with (a, q) = 1, then∣∣∣∣∣
q−1∑
r,s=0

e2πih(r,s)a/q

∣∣∣∣∣�h q.

Proof. Fixing a, q ∈ N with (a, q) = 1, exploiting that |z|2 = zz for any z ∈ C, and changing variables
r′ = r + t, s′ = s+ u, we see that∣∣∣∣∣

q−1∑
r,s=0

e2πih(r,s)a/q

∣∣∣∣∣
2

=

q−1∑
r,r′,s,s′=0

e2πi(h(r′,s′)−h(r,s))a/q

=

q−1∑
r,s,t,u=0

e2πi(h(r+t,s+u)−h(r,s))a/q

=

q−1∑
r,s,t,u=0

e2πi(2b1rt+b1t
2+b2ru+b2st+b2tu+2b3su+b3u

2)a/q

=

q−1∑
t,u=0

e2πih(t,u)a/q

(
q−1∑
r=0

e2πi(2b1t+b2u)ra/q

)(
q−1∑
s=0

e2πi(b2t+2b3u)sa/q

)

=

q−1∑
t,u=0

e2πih(t,u)a/q

{
q2 if 2b1t+ b2u ≡ b2t+ 2b3u ≡ 0 mod q

0 else
,

where the last equality follows from the orthogonality relation

q−1∑
r=0

e2πirb/q =

{
q if q | b
0 else

.

Looking at the two congruence conditions above, multiplying the first expression by b2, and multiplying the
second expression by 2b1, we get the system

2b1b2t+ b22u ≡ 2b1b2t+ 4b1b3u ≡ 0 mod q.

By subtracting the two resulting expressions we see that q must divide ∆(h)u. Letting d = gcd(q,∆(h)), we
have that u must be one of the d multiples of q/d, which each yield at most gcd(q, 2b1b2) choices for t. In
particular, if ∆(h) 6= 0, then the number of simultaneous solutions is Oh(1), and the lemma follows. �
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5.2. Proof of (24). Returning to the setting of the proof of Lemma 4.1, if α ∈Mq with

q ≤ η−1 �h δ
−1 ≤ N1/20 �M1/10,

then α = a/q + β with

|β| < 1

η2N
�h N

−9/10 �M−9/5

for some a with (a, q) = 1. In this case, Lemma 5.2 tells us that

SM (α) = q−2G(a, q)

∫ M

0

∫ M

0

e2πih(x,y)βdxdy +Oh(M1.3).

Applying Lemma 5.3 and trivially bounding the double integral by M2, we have

|SM (α)| �h M
2/q,

as claimed in (24). �

5.3. Minor arc estimates. We begin our pursuit of (25) with the following standard oscillatory integral
estimate, which will allow us to exhibit (25) in the case that α is fairly close to a rational with small
denominator, but not so close as to lie in the major arcs.

Lemma 5.4 (Van der Corput’s Lemma for Quadratic Polynomials). If g(x) = x2 + bx+ c ∈ R[x] and I ⊆ R
is an interval, then ∣∣∣∣∫

I

e2πig(x)βdx

∣∣∣∣� |β|−1/2.

Proof. Fix g(x) = x2 + bx + c ∈ R[x] and an interval I ⊆ R, and let E = (I + b/2) ∩ {x : |x| ≥ |β|−1/2},
where I + b/2 denotes the translation of the interval I by b/2. We know that the measure of (I + b/2) \ E
is at most 2|β|−1/2, so we complete the square and change variables to see that∣∣∣∣∫

I

e2πig(x)βdx

∣∣∣∣ =

∣∣∣∣∫
I

e2πi((x+b/2)2−b2/4+c)βdx

∣∣∣∣
=

∣∣∣∣∫
I

e2πi(x+b/2)2βdx

∣∣∣∣
=

∣∣∣∣∣
∫
I+b/2

e2πiy2βdy

∣∣∣∣∣
� |β|−1/2 +

∣∣∣∣∫
E

e2πiy2βdy

∣∣∣∣ .
Writing

e2πiy2β =
1

4πiyβ

d

dx
(e2πiy2β),

we have by integration by parts that∫
E

e2πiy2βdy =

[
e2πiy2β

4πiyβ

]
+

∫
E

e2πiy2β

4πiy2β
dy,

where the expression in brackets is appropriately evaluated at endpoints of E. By construction, |y| ≥ |β|−1/2

at each endpoint of E, and hence∣∣∣∣∫
E

e2πiy2βdy

∣∣∣∣� |β|−1/2 + |β|−1

∫
|y|≥|β|−1/2

1

y2
dy � |β|−1/2,

which establishes the desired estimate. �

With regard to estimating the double integral in the conclusion of Lemma 5.2, since we assumed h was not
identically zero, we can relabel or make a linear change of variables to reduce to the case where b1 6= 0. Then,
by applying Lemma 5.4 to the integral in x for every fixed y, we immediately get the following estimate.
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Corollary 5.5. If M > 0, then

(29)

∣∣∣∣∣
∫ M

0

∫ M

0

e2πih(x,y)βdxdy

∣∣∣∣∣�h M |β|−1/2.

For our final ingredient, we turn to the following traditional estimate, which we utilize to establish (25) when
α is close to a denominator that is neither too small nor too large.

Lemma 5.6 (Weyl’s Inequality for Quadratic Polynomials). Suppose g(x) = bx2 + cx + d ∈ R[x], b ∈ N,
a, q ∈ N, t ≥ 1, and x > 0. If (a, q) = 1 and |α− a/q| ≤ tq−2, then∣∣∣∣∣∣

∑
1≤n≤x

e2πig(n)α

∣∣∣∣∣∣� (
bx log q + tx+ btx2/q + q log q

)1/2
.

Proof. Letting S denote the exponential sum we wish to estimate, we see that

(30) |S|2 =
∑

1≤n,n′≤x

e2πi(h(n′)−h(n))α = x+ 2<

 ∑
1≤n<n′≤x

e2πi(h(n′)−h(n))α

 ,

where the x accounts for terms where n = n′, and < denotes the real part. With a change of variables
n′ = n+ h, we have ∑

1≤n<n′≤x

e2πi(h(n′)−h(n))α =
∑

1≤n≤x−1

∑
1≤h≤x−n

e2πi(h(n+h)−h(n))α

=
∑

1≤n≤x−1

∑
1≤h≤x−n

e2π(2bnh+h2+ch)α

=
∑

1≤h≤x−1

e2πi(h2+ch)α
∑

1≤n≤x−h

e2πi(2bhn)α.

Applying the geometric series formula to the inner sum and the triangle inequality gives us

(31)

∣∣∣∣∣∣
∑

1≤n<n′≤x

e2πi(h(n′)−h(n))α

∣∣∣∣∣∣�
∑

1≤h≤x

min
{
x, ‖2bhα‖−1

}
≤

∑
1≤h≤2bx

min
{
x, ‖hα‖−1

}
,

where ‖ · ‖ denotes the distance to the nearest integer.

Fixing q ∈ N and breaking the sum in h into intervals of length q, we have

(32)
∑

1≤h≤2bx

min
{
x, ‖hα‖−1

}
≤

∑
1≤j≤2bx/q

q−1∑
s=0

min
{
x, ‖(qj + s)α‖−1

}
.

If a ∈ N with |α− a/q| ≤ tq−2, we can write α = a/q +O(t/q2), and hence

(qj + s)α = qjα+
sa

q
+O(t/q).

Further, if we let k be the nearest integer to q2jα, then qjα = k/q +O(t/q) and hence

(qj + s)α =
sa+ k

q
+O(t/q).

Combined with (32), this yields

(33)
∑

1≤h≤2bx

min
{
x, ‖hα‖−1

}
≤

∑
1≤j≤2bx/q

q−1∑
s=0

min

{
x, ‖sa+ k

q
+O(t/q)‖−1

}
.
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If (a, q) = 1, then as s runs over all congruence classes modulo q, so does sa. In particular, the O(t/q) error
term dominates for at most O(t) terms, and we have

∑
1≤j≤2bx/q

q−1∑
s=0

min

{
x, ‖sa+ k

q
+O(t/q)‖−1

}
�

∑
1≤j≤2bx/q

tx+

q/2∑
s=1

q

s

� (2bx/q + 1)(tx+ q log q),

which combines with (30), (31), and (33) to yield the desired estimate. �

In the same way we deduce Corollary 5.5 from Lemma 5.4, we reduce to the case of b1 6= 0 and apply Lemma
5.6 to the sum in m for every fixed n to immediately get the following estimate.

Corollary 5.7. Suppose a, q ∈ N, α ∈ [0, 1], and x > 0. If (a, q) = 1 and |α− a/q| ≤ q−2, then

(34)

∣∣∣∣∣∣
∑

1≤m,n≤x

e2πih(m,n)α

∣∣∣∣∣∣�h x
(
x log q + x2/q + q log q

)1/2
.

Remark. We note that under the assumption ∆(h) 6= 0, the estimates (29) and (34) can be improved to
|β|−1 and (

x4/q2 + (x3/q + x2 + qx) log q
)1/2

,

respectively. For the former, since it is in a continuous setting, one can simply use that if b2− 4ac 6= 0, then

ax2 + bxy + cy2 = u2 + v2

after an invertible linear change of variables, and then apply Lemma 5.4 separately in u and v. The latter
estimate can be established by mimicking the two-variable Weyl differencing process, and exploitation of
nonzero discriminant, exhibited in the proof of Lemma 5.3. However, for the purposes of proving Theorem
1.1, we only require this sort of “optimal cancellation” on the major arcs, so for the sake of brevity, and for
the sake of exposing the components used in previous applications of this method, we leave the details of
these improvements as exercises for the reader.

5.4. Proof of (25). Returning to the setting of the proof of Lemma 4.1, we consider α ∈ m. By the
pigeonhole principle, there exists 1 ≤ q ≤M7/4 and (a, q) = 1 such that

|α− a/q| ≤ 1

qM7/4
≤ 1

q2
.

Writing α = a/q + β, if q ≤M1/4, then we have from Lemma 5.2 that

(35) SM (α) = q−2G(a, q)

∫ M

0

∫ M

0

e2πih(x,y)βdxdy +Oh(M3/2).

If q ≤ η−1, then it must be the case that |β| > (η2N)−1, since otherwise we would have α ∈M. In this case,
recalling that N �h M

2 and η �h δ ≥ N−1/20 �h M
−1/10, it follows from (35), Corollary 5.5, and trivially

bounding G(a, q) by q2 that

|SM (α)| �M |β|−1/2 +Oh(M3/2)�h ηM
2.

If η−1 ≤ q ≤M1/4, then by (35), Lemma 5.3, and trivially bounding the double integral by M2, we have

SM (α)�h M
2/q +Oh(M3/2)�h ηM

2.

Finally, if M1/4 ≤ q ≤M7/4, then by Corollary 5.7 we have

|SM (α)| �h M(M log q +M2/q + q log q)1/2 �M15/8 �h ηM
2,

and (25) is established in all cases. �
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https://terrytao.wordpress.com/2013/02/28/a-fourier-free-proof-of-the-furstenberg-sarkozy-theorem/.
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[20] A. Sárközy, On difference sets of sequences of integers I, Acta. Math. Hungar. 31(1-2) (1978), 125-149.
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