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ABSTRACT. We address an analog of a problem introduced by Erdés and Fishburn, itself an inverse formu-
lation of the famous Erdds distance problem, in which the usual Euclidean distance is replaced with the
metric induced by the £!-norm, commonly referred to as the tazicab metric. Specifically, we investigate the
following question: given d,k € N, what is the maximum size of a subset of R? that determines at most
k distinct taxicab distances, and can all such optimal arrangements be classified? We completely resolve
the question in dimension d = 2, as well as the k = 1 case in dimension d = 3, and we also provide a full
resolution in the general case under an additional hypothesis.

1. INTRODUCTION

In 1946, Erdds [2] asked a now famous question: given n € N, what is the minimum number of distinct
distances determined by n points in a plane? Denoting this minimum by f(n), he proved via an elementary
counting argument that f(n) = Q(y/n), and he conjectured that the correct order of growth is n/y/logn, as
attained by a y/n x y/n integer grid. After decades of incremental progress, this conjecture was effectively
resolved in a celebrated result of Guth and Katz [5], who established that f(n) = Q(n/logn).

50 years after Erdés’s original paper, Erdés and Fishburn [3] addressed the same question from the inverse
perspective, and aspired to precise results in fixed cases rather than general asymptotic results. Specifically,
they investigated the following: given k € N, what is the maximum number of points in a plane that
determine at most k distinct distances, and can such optimal arrangements be classified? This question,
which we refer to as the Erdds-Fishburn problem, was fully resolved by Erdds and Fishburn for 1 < k < 4,
then by Shinahara [8] for &k = 5, and Wei [9] for k = 6, while it remains open for k > 7. By convention, in
the quoted results and throughout this paper, 0 is not counted as a distance determined by a set of points.

These questions can also be adapted to higher dimensions, and to alternative notions of distance. Here
we focus on a particular, well-known alternative metric.

Definition 1.1. For d € N and = (1,...,24) € R?%, we define the ¢!-norm of x by
[zl = |za| + - + |zal,

which in particular satisfies the triangle inequality ||z + y|l1 < ||z|l1 + ||y|l1. Like every norm, the £*-norm

induces a metric on R? by defining ||z — y|1 to be the £'-distance between x,y € R

The metric induced by the ¢'-norm is commonly referred to as the tazicab metric, because it measures
the length of the shortest path between two points in space, under the restriction that one can only travel
in directions parallel to the coordinate axes, as if in a taxicab on a grid of city streets. For example, if two
people at city intersections are separated by 3 blocks horizontally and 4 blocks vertically, then, as the crow
flies, they are 5 blocks apart by the Pythagorean theorem. However, to actually make the journey without
cutting through buildings, they must walk 7 blocks, which is the /!-distance.

As noted in Chapters 0 and 1 of [4], one can show that the minimum number of ¢!-distances determined
by n points in R? is Q(n'/4), and this order of growth is attained by {1,2,3,..., [n'/?]}¢. Therefore, in
the case of the taxicab metric, the big picture asymptotic question is immediately resolved, which begs the
question of whether this case can be analyzed more precisely. To begin this journey, we first consider the
Erdés-Fishburn problem in the plane with k£ = 1.



We fix two points U,V € R? say U = (—1,0) and V = (1,0). With the usual notion of distance, if any
additional points can be added without determining an additional distance, those points necessarily lie on
the circles of radius 2 centered at U and V, respectively. Those two circles intersect in only two points,
and we find that they are Q@ = (0,v/3) and R = (0, —v/3). Since the distance between @ and R is greater
than 2, only one of the two can be added to {U, V} while maintaining only a single distance. In summary,
a set P C R? determining a single distance satisfies | P| < 3, and equality holds if and only if P is the set of
vertices of an equilateral triangle.

However, even in this simplest case, the taxicab metric case diverges from that of the usual distance.
With the taxicab metric, the “circle” (which we refer to as an ¢!-circle) of radius 2 centered at U is in fact a
square, rotated 45° from axis-parallel, with the four sides connecting the points (—3,0), (—1,2), (1,0), and
(—1,—2). Similarly, the ¢!-circle of radius 2 centered at V is a square with sides connecting (3,0), (1, —2),
(—1,0), and (1,2). Like the usual distance case, these two circles intersect in exactly two points, this time
Q = (0,1) and R = (0,—1). The difference is that here Q and R are indeed separated by ¢!-distance 2, and
hence the four-point configuration {U, V,Q, R} determines a single ¢!-distance.

2. MAIN DEFINITION AND RESULTS

Inspired by the four-point construction above, as well as additional trial and error, we define the following
family of sets, which serve as our candidates for resolving the Erdés-Fishburn problem for the taxicab metric.

Definition 2.1. For integers d > 0 and k > 0, we define
Ag(k) = {n=(n1,no,...,na) €Z%: |n|ly <k, n1 4+ +ng=k (mod 2)}.

Ag4(k) is the union of the integer lattice points lying on the ¢!-spheres (which in dimension d are 29-faced
polytopes) centered at the origin of every other integer radius, starting with either 0 or 1 depending on
the parity of k. The four-point configuration discussed in the introduction is As(1), and some additional
examples are pictured below.
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(A) A2(2): 9 points in R? determining two ¢'-distances (B) A3(2): 19 points in R® determining two ¢!-distances

FIGURE 1

In Section 3, we establish the following properties of Ay4(k), including the crucial fact that it determines
exactly k distinct ¢!-distances, the primary motivation for its definition.

Theorem 2.2. The following hold for all d,k € N:
(i) Aa(k) determines exactly k distinct *-distances, specifically 2,4, ..., 2k

(i) [AL(B)| =k + 1, [Aa(1)] = 2d

k—1
(iii) |Aay1 (k)| = [Aa(R)] +2 ) |Aa(5)]
j=0



Parts (ii) and (iii) of Theorem 2.2, combined with known formulas for sums of powers, allow one to determine
explicit formulas for [Ag4(k)| for any fixed d € N. We include the first few examples in the following table:

TABLE 1. Explicit Formulas for [Aq(k)]

| |Aa(k)] |
(k+1)2
2(k+1)3+3(k+1)
s(k+1)*+ 2(k+1)2
Zh+1°+2(k+1)3+L1(k+1)
#k+1)°+5(k+1)" + 2 (k+1)?
b+ 1)+ 2(k+1°+B(k+1)°+ L(k+1)

N[O | O W N X

Some of the patterns observed in Table 1 can be generalized using Faulhaber’s Formula for sums of powers,
as seen in the following formulation, which we also prove in Section 3.

Theorem 2.3. For each d € N and each integer k > 0, we have the formula
[d/2]-1
Aa(B) = > agi(k+1)",

i=0
where the coefficients aq; satisfy the recursive formula

: Ad—1.¢ d—2/¢
7,:2 . B i—£)>
RS T (2(@ - e)) 26-0

where B; is the i-th Bernoulli number. In particular, we have the explicit formulas aqo = 24=1/4d\ for all
d €N and ag1 =2972/(3(d — 3)!) for all d > 3.

Detailed analysis of Ag4(k) is perhaps of independent interest, but to make headway toward our goal, we
need to address the important questions: does Ag4(k) have maximal size amongst subsets of R? determining
at most k distinct ¢!-distances? If so, is A4(k) the only such optimal arrangement? In anticipation of the
latter question, we observe that any optimal arrangement can undergo any scaling, or any transformation
that preserves the £!-norm, and remain optimal, leading to the following definition.

Definition 2.4. For d € N, we say that two subsets of R? are ¢'-similar if one can be mapped to the
other via a composition of translations, reflections about coordinate hyperplanes, dilations, and coordinate
permutations, as these transformations either preserve or uniformly scale collections of #!-distances.

We note that the list of transformations in Definition 2.4 does not include rotations, because, unlike the usual
Euclidean metric, the taxicab metric is not invariant under rotation, unless the rotation can alternatively be
obtained through reflection about coordinate hyperplanes and permutation of coordinates. This fact rears
its head in our exploration of the taxicab metric in higher dimensions, and plays a key role in our discussions
in Section 6. For now, though, the following result established in Section 4 completely resolves the taxicab
analog of the Erdés-Fishburn problem in the plane.

Theorem 2.5. If k € N and P C R? determines at most k distinct (*-distances, then |P| < (k + 1)2.
Further, |P| = (k+ 1)? if and only if P is £*-similar to Ao (k).

As we discuss in Section 4, the d = 2 case is simplified by the fact that, for the purposes of analyzing
distance sets, the £'-norm in R? is effectively the same as the £>°-norm defined by ||(z,y) |l = max{|z], [y|}.
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However, this equivalence does not persist in dimension d > 3, and for this reason, our proof strategy does not
immediately generalize to higher dimensions. (Although, for the interested reader, the proof does generalize
to show that if P C R? determines at most k distinct /*°-distances, then |P| < (k + 1)4, and equality holds
if and only if P is ¢!-similar to {0,1,2,...,k}%.)

With considerable additional effort, we successfully get our foot into the higher-dimensional door in Section
5, which assures us that the unique optimality of A4(k) is not completely dependent on a connection to the
£°°-norm.

Theorem 2.6. If P C R? determines a single (*-distance, then |P| < 6. Further, |P| = 6 if and only if P
is (*-similar to As(1).

Remark on previous work for & = 1. After the initial posting of this paper to the arxiv server, we
were alerted to previous work done in the k = 1 case (referred to as equilateral sets) in a variety of metric
spaces, including R? with the taxicab metric (referred to as rectilinear space). Specifically, Theorem 2.6
above follows from Corollary 4.2 of [1], due to Bandelt, Chepoi, and Laurent, while Koolen, Laurent, and
Schrijver [7] showed that if P C R* determines a single ¢!-distance, then |P| < 8 = |A4(1)|. This partially
settles a question of Kusner (see Problem 0 in [6]), who asked if |P| < 2d = |A4(1)| holds for subsets of R?
determining a single ¢!-distance, and this remains open for d > 5. Conjecture 2.7 below can be thought of
as a precise, multi-distance generalization of Kusner’s question. While the conclusion of Theorem 2.6 was
known previously, we believe our alternative, elementary proof given in Section 5 remains of interest.

In Section 6, we explore the question of what additional hypotheses are required to prove the optimality of
As(k) for all k € N, or even A4(k) in full generality. We find that the proof of Theorem 2.5 can be fully
adapted with a seemingly mild additional assumption, leading us to make the following general conjecture.

Conjecture 2.7. If d,k € N and P C R? determines at most k distinct £*-distances, then |P| < |Aq(k)|.
Further, |P| = |Aq(k)| if and only if P is *-similar to Ag(k).

3. PROPERTIES OF A4(k): PROOF OF THEOREMS 2.2 AND 2.3

We begin this section by proving the essential properties of A4(k) that make it a worthy candidate for
resolving the Erdds-Fishburn problem for the taxicab metric.

3.1. Proof of Theorem 2.2. Fix k € N. For (i), fix d € N, note that by definition of A4(k), we have
[In|ly <k for all n € Ag(k). In particular, for any n,m € A4(k), we have by the triangle inequality that

In—mlly < [[nlli + [mly < k+k = 2k.
Further, ||[n — m|[y = |n1 — mq| + -+ - + |nqg — mgy| is certainly an integer, and by definition of A4(k), and the
fact that an integer is congruent to its absolute value modulo 2, we have
[ny —my|+-- 4 |ng—ma|=n1 —mi + - +ng —my

=1+ +ng) — (M4 +mg)

=k—-k

=0 (mod 2).
Therefore, the only possible nonzero values of ||n —m||; are 2,4,...,2k, and for each 1 < j < k the distance

2j is attained between the points (4,0, ...,0) and (—4,0,...,0) if j = k (mod 2), or between (j,1,...,0) and
(—=7,1,...,0)if 7 # k (mod 2).

For (ii), we first see that
ay(h) = JTB R 20 L k2 k)i s 0dd
YT Nk k2, -2,0,2,. . k— 2.k} ifkiseven

In particular, |Aq (k)| = 2[k/2] = k+ 1 if k is odd and |A; (k)| = 2(k/2) + 1 =k + 1 if k is even. Secondly,
we see that Ag(1) is precisely {+e; : 1 <14 < d}, where {e;} is the standard basis for R
4



For (iii), we see that the possible values of the final coordinate for elements of A4y1(k) are integers satisfying
—k < 2441 < k. Further, for a fixed value x441 = ¢, the intersection of this hyperplane with Az (k) is

{(n1,.. i na,0) € Z s | + -+ na <k —ef,m 4+ na=k—c=k—|d (mod 2)},

which is in natural bijection with Ag(k — |c|). Therefore,

k k—1

Aarr (k) = [Aa(k = le])] = |[Aa(k)] + 2> [Aa(j)]-
c=—k =0

O

We continue by establishing a detailed formula for |A4(k)|, which in particular guarantees that it has the
correct order of magnitude Q(k9).

3.2. Proof of Theorem 2.3. We first note that by Theorem 2.2(ii), we have |A;(k)| = k+ 1 for all k£ > 0.
We now fix d > 2, let h = [d/2] — 1, and make the inductive hypothesis that

(1) Ag—1(k)| = ag—10(k + D) tag_1 1 (k+ 1)+ +ag_yp(k+1)47172"
for all k£ > 0. Faulhaber’s formula gives
n p—1
nPtl P 1 p+1 .
2 F = P — JR— J— B i 17
. o JZJ p+1+2+p+1i_0( i ) e

for all n,p € N, where B; is the i-th Bernoulli number. By Theorem 2.2(iii), we have

k—1 k
(3) Aa(B) =2 [Aa-1 ()] +1Aa-1 (k) =2 [Aa1 ()] = [Aa-1(R)],
=0 =0
which combines with (1) to yield
k k
[Aa(k)| =2 | as—1,0 Z(] + D) agog Z(] + 1)) Ay (R)
=0 =0
k+1 kt1
=2{ag10 i 4 taaany i) = |Aaa (k)|
j=1 j=1

=2(ag-1,0Fa-1(k+ 1)+ +ag_1nFa-1-on(k + 1)) — [Aa—1(k)|.

This tells us that we can indeed write |Aq4(k)| as a polynomial in &k + 1, but we wish to establish the claimed
explicit and recursive formulas for the coefficients, as well as the fact that every other coefficient is zero.
First we consider the (k + 1)¢ coefficient, which only arises from the term 2aq_1,0Fs—1(k + 1). Since the
nPT1 coefficient of Fj,(n) is 1/(p + 1), we have a4 = 2a4—1,0/d. Using the base case a; o = 1, we have by
induction that aq0 = 2d_1/d!, as claimed.

Next we consider the (k + 1)%! coefficient, which arises from two sources: the (k + 1)?~! coefficients of
2aq-10F4—1(k + 1) and —|A4_1(k)|, respectively. The former is 2a4_1,0(1/2) = a4—1,0, while the latter
is —ag_1,0, which means that the (k + 1)9=! coefficient of |A4(k)| is indeed 0. More generally, for other
coefficients corresponding to terms of the form (k-+1)4=172 we use the following three facts: the (k+41)4—1-2
coefficient on 2a4—1 ;Fg—1-2i(k + 1) = aq—1, by the same logic as above, the (k + 1)4=1=2% coefficient of
—[Ag—1(k)| is —ag—1,, and the (k + 1)?7172 coefficient of Fy_1_a¢(k + 1) is 0 for all £ < i, because B,, = 0
for all odd n > 3. Therefore, all (k + 1)4~12% coefficients of |A4(k)| are 0.

For the the (k + 1)?72 coefficient, we begin by noting that a direct calculation using (2) and (3) yields
|As(k)| = 2(k+1)%+ % (k+1), hence a1 = 1/3, which serves as the base case for another induction. Fixing
d > 4 and assuming the claimed formula agz—1 ;1 = 2¢7%/(3(d — 4)!) holds, the (k+1)4=2 coefficient of |A4(k)|
is formed by two contributions, from 2aq_10F4—1(k + 1) and 2a4—1,1F4—3(k + 1), respectively.
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The former is given by

1\ [ d 272 1 dd-1) 1 243
2"“’0(61)((12)32_2'@1)!'d' 2 6 3(d-2)0

while the latter is given by

1 9d—4 1 9d—3
211 Gy = R T a2 3d—A)(d—2)
Therefore, we have
9d—3 9d—3 9d—3 + (d _ 3)2d—3 2d—3(d _ 2) 9d—3
U= 3o T 3d_ANd_2) 3(d—2)! T 3(d-2)l " 3d-3)

as claimed.

More generally, by (2) and (3), we see that the (k+ 1)?~2¢ coefficient of |A4(k)| receives a contribution from
2aq—1,0F4—1-2¢(k + 1) for each 0 < ¢ < i. Specifically, that contribution is

1 (d—2 a1 d—20
A T (d - 2¢> Bt =" (2(1' - @)BM‘“’

and the recursive formula for aq ; follows. O

4. OPTIMALITY IN TwoO DIMENSIONS: PROOF OF THEOREM 2.5

In this section, we prove the unique optimality of Ay(k), in that it is the unique subset of R?, up to
0 -similarity, of maximal size amongst sets determining at most k distinct ¢!-distances. As referenced in
Section 2, the proof is in part enabled by an equivalence between the ¢'-norm and the ¢*-norm on R2.
We frame our discussion entirely in the context of the ¢'-norm, but the connection is implicit in our proof,
particularly the following lemma.

Lemma 4.1. Let vy = (1,1) and vo = (—1,1). If 2 € R? with x = c1v; + cava, then

llzll1 = 2max{[c1], |ca|}

Proof. Let v; = (1,1), va = (—1,1), fix € R?, and write x uniquely as = cjv; + cave = (¢1 — ¢, ¢1 + C2).
By potentially reflecting over the diagonal 21 = x5 and/or replacing x by —z, both of which preserve the
¢1-norm, we can assume without loss of generality that |c1| > |c2| and ¢; > 0. In this case,

llz]|1 = |e1 — co| + |e1 + cal = ¢1 — ca + €1 + ca = 2¢; = 2max{]cy], |ca|}-
O

Remark. As an alternative approach to Section 4, one could treat the connection between the ¢! and
¢>° norms on R? in a more explicit way. Namely, Lemma 4.1 can be reframed as the statement that the
map [ : (R%,] - |l1) = (R?%,] - ||oo) defined by f(z,y) = (z + y,x — y) is a linear isomorphism satisfying
[(z,9)|l1 = IIf(x,y)]|co- Therefore, any results related to the £>°-norm can be immediately transferred to the
¢'-norm via this isomorphism. In particular, the proofs that follow could be rewritten in a slightly cleaner
way in the £°° context. However, in order to maintain our hands-on approach with the taxicab metric, we
have chosen to leave the proofs in their ¢! form.

Our main strategy for proving Theorem 2.5 is inspired by Erdds and Fishburn [3]. Specifically, we suppose
that P C R? determines at most k distinct ¢!-distances, and we seek an upper bound on the number of
points we must remove from P in order to eliminate the largest ¢'-distance, hence reducing to the case of
k — 1 distinct ¢!-distances and allowing us to invoke an inductive hypothesis. The following sequence of
lemmas formalizes this strategy. Here we define an ¢-ball in the expected way, as the region bounded by an
0'-sphere, which for d = 2 is an ¢!-circle.



Lemma 4.2. Suppose P C R? is finite. If D is the largest £*-distance determined by P, then P is contained
in a closed £'-ball of diameter D.

Proof. Suppose P C R? is finite. Let v; = (1,1) and vy = (—1,1). Since {vy,v2} forms a basis for R?, every
x € P can be written uniquely as x = civ; + cave. Choose x1, 3, 23,24 € P such that x; maximizes cq,
29 minimizes ¢;, 3 maximizes c, and x4 minimizes cp. Call these values ¢1 max; €1,min, €2, max, and €2 min,
respectively. These choices contain P inside of a rectangle R, rotated 45° from axis parallel, determined by
the inequalities ¢i min < ¢1 < €1,max and 2 min < €2 < €2 max-

Let w1 = €1, max — C1,min and W2 = €2 max — C2,min, and assume without loss of generality that wy > wy. By
Lemma 4.1, we have that ||z1 — z2]l1 = 2wy and ||p1 — p2]j1 < 2w; for all p1,ps € R, so D = 2w; is the
largest ¢;-distance determined by P. Let ¢2 new = €2,max — W1 < €2.min, and let B O R O P be defined by
the inequalities ¢1 min < ¢1 < €1 max and €2 new < €2 < €2 max. B is a square rotated 45° from axis parallel,
or in other words a closed ¢!-ball, of diameter D, as required. O

Lemma 4.3. If P C R? is contained in a closed £'-ball B of diameter D, then the ¢'-distance D can be
eliminated from P by removing the points of P contained in any two adjacent sides of the boundary of B.

Proof. Suppose P C R? is contained in a closed #!-ball B of diameter D.

Let a1, as be the left and right vertices of B, respectively, so in particular ||a; —as||; = D. Let U denote the
closed (including ay, as) upper £*-semicircle connecting a; and as, and let L denote the open (not including
ay,as) lower £'-semicircle connecting a; and as. Since the £'-norm is invariant under 90° rotation, it suffices
to establish the conclusion of the lemma for removing the points of P lying in U. Suppose z1,22 € P\ U.

Case 1: At least one of 21, x9 lies in B\ (U U L), which is an open ¢*-ball of radius D/2.

Assume without loss of generality that 27 € B\ (UUL), and let ¢ be the center of B. Therefore, |21 —¢||; <
D/2 and ||z2 —¢||1 < D/2. By the triangle inequality, ||z1 — 2|1 < ||lz1 —¢|1 + |lc— 2|1 < D/2+D/2 = D.

Case 2: x1,29 € L. After possibly reflecting, assume without loss of generality that z; is to the left of xo
and ||z1 — a1|l1 < ||z2 — az|l1, so 1 is positioned at least as high as x5, By replacing x1 with a;, we move
up and to the left, so both the horizontal and vertical components of the ¢'-distance to x5 get larger, hence

|21 — 221 < [lay — 22|y = D.

In both cases, all distances amongst points in P\ U are strictly less than D, and the lemma follows. |

Lemma 4.4. If P C R? is contained in a line and determines at most k distinct (! -distances, then |P| < k+1.
Further, if |P| = k + 1, then P is an arithmetic progression, meaning the ¢*-distances are \,2X, ..., kX for
some X > 0.

Proof. Since ¢!-distance along a straight line in R? is just a constant multiple, depending on the direction
of the line, times the standard Euclidean distance, it suffices to establish the lemma with d = 1, for which
we induct on k.

The base case k = 1 is trivial, as three points x; < 3 < x3 in R automatically determine two distances
T9 —x1 < 23 — 21, and any two points form an arithmetic progression.

Now, fix k > 2, and assume that if Q C R determines at most k& — 1 distances, then |Q| < k, and further, if
|Q| = k, then @ is an arithmetic progression. Now suppose P C R determines at most k distances.

Let P={z1 <z9 <---<x,}. Then—1 distances zo — 1 < 3 —x1 < --- < x,, — o7 are all distinct, hence

n —1 < k, or in other words n < k + 1. Further, suppose n = k + 1. By removing xy41, we also remove

the longest distance 41 — x1, so the set Q = {x1,...,2,} determines k — 1 distances. By our inductive

hypothesis, @ must be an arithmetic progression, in other words Q = {x1, 21+ A\, 21 + 2\, ... 21 + (k— 1)A}.
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If 241 < @1 + kX, then both 241 — 21 > (K — 1)\ and 241 — 2, < A are new distances not determined by
Q. If 441 > 21 + kA, then both xp41 — 21 > kX and 21 — 22 > (k— 1)\ are new distances not determined
by Q. In either case, P determines at least k 4+ 1 distinct distances, contradicting the assumption that it
determines at most k distances. Therefore, x;1 must be x1 + kX, and the lemma follows. O

Lemma 4.5. If S C R? is contained in the union of two adjacent sides of an (*-circle and determines at
most k distinct (*-distances, then |S| < 2k + 1. Further, if |S| = 2k + 1, then the points of S on each side
form an arithmetic progression containing the shared vertex.

Proof. Suppose S C R? is contained in the union of two adjacent sides of an ¢!-circle and determines at most
k distinct ¢'-distances. Assume without loss of generality that the two adjacent sides are the closed upper
semicircle. We know from Lemma 4.4 that there are at most k 4+ 1 points on each of the two sides.

Further, if |S| > 2k + 1, then there are exactly k4 1 points on one side, assume the left, and at least k points
on the right side. Let x1, ..., 241 denote the points of P on the left side, ordered left to right, and let y be
any point of P on the right side. We note that

21— @alls < [lo1 — @31 < -+ < [lv1 = 2pqalls < |21 =y,

and ||x1 — 2g+1|]1 = ||z1 — y||1 is only possible if a1 is the vertex shared by the two sides. In particular,
if the shared vertex is not included amongst the k 4+ 1 points on the left side, then at least k + 1 distinct
¢'-distances occur from the leftmost point, contradicting our assumption.

Therefore, if |\S| > 2k + 1, it must be the case that there are exactly k + 1 points on both the left and right
sides, including the shared vertex, meaning in fact |S| = 2k + 1. Finally, by Lemma 4.4, we know that the
k + 1 points on each side must form an arithmetic progression. O

We are now fully armed to show the unique optimality of As(k).

Proof of Theorem 2.5. We induct on k. For our base case, consider k¥ = 0. In order for a set to determine
0 ¢'-distances (as always, not including 0), it can contain at most 1 = (0 + 1)? point, and if it contains a
point, then it is trivially a translation of A5(0) = {(0,0)}.

Now, fix k € N, assume the conclusion of the theorem holds for k — 1, and suppose P C R2? determines at
most k distinct ¢!-distances. By Lemma 4.2, P is contained in a closed ¢!-ball B of diameter D, where D
is the largest ¢'-distance determined by P. By Lemma 4.3, we can remove the distance D by removing the
points of P that lie on the closed upper ¢'-semicircle U on the boundary of B. Since D has been removed
as an (!-distance, we know that "= P\ U determines at most k — 1 distinct ¢!-distances. By our inductive
hypothesis, |T| < k%, and if |T| = k?, then T is ¢*-similar to Ay(k — 1).

Further, by Lemma 4.5, we know that S = PNU satisfies |S| < 2k+1, and if |S| = 2k+ 1, then S consists of
two (k4 1)-term arithmetic progressions, one on each side of U, which meet at the shared vertex. Therefore,
|P| < |T|+|S| < k?>+2k+1=(k+1)% and |P| = (k+ 1)? if and only if T is £*-similar to Az(k — 1) and S
is a union of two arithmetic progressions meeting at the shared vertex. Finally, the only way these two sets
can be combined without creating additional ¢!-distances is for S UT to be £!-similar to As(k). g

5. SINGLE /'-DISTANCE IN THREE DIMENSIONS: PROOF OF THEOREM 2.6

Without analogs of Lemmas 4.1 and 4.2 in dimension d > 3, our strategy for proving Theorem 2.5 does
not naturally generalize to higher dimensions. However, in the case of k = 1, we make the observation that
if P C R? determines a single ¢'-distance, then all but the “southernmost” point (the point minimizing the
last coordinate) of P lie on a single closed upper £*-hemisphere. The following sequence of lemmas provide
a detailed investigation into how ¢!-distance behaves between points on a single upper £!-hemisphere in R?,
which consists of four flat faces, one for each quadrant determined by the first two coordinates, intersecting
at a single northernmost point. The three lemmas correspond to the cases where the points lie on the same
face, opposite faces, or neighboring faces, respectively.



Lemma 5.1. Suppose V,W € R3 with V. = (x1,y1,21) and W = (z2,y2,22). If V|1 = [|[W]1 and
T1T2, Y12, 2122 > 0, then

[V =Wl = 2max{|z; — z2l, [y1 — y2|, [21 — 22/}

Proof. Suppose V,W € R3, V = (z1,y1,21), W = (22,92, 22), [[V|1 = [W]l1 = A, and @122, 5192, 2122 > 0.
After reflections about coordinate planes, coordinate permutations, and relabeling V' and W (which all
preserve both sides of the equation in the conclusion of the lemma), we can assume without loss of generality
that all coordinates are nonnegative and x1 — x2 > |y1 — y2| > |21 — 22|. Since

Wlh=z1+y+zn=|Wli=2z2+y2+ 22 =},
we have in particular that (1 — z2) + (y1 — y2) + (21 — 22) = 0. Since the largest coordinate distance is in
the z-direction, and x; > z2, we must have y; < ys and z; < z5. Therefore
IV =Wl = (z1 = 22) + (y2 = 31) + (22 — 21)
=zt -yt A—r2—y2) - (A—21—u1)
= 2(z1 — z2),

and the lemma follows. O

Lemma 5.2. Suppose V,W € R3 with V = (x1,y1,21) and W = (z2,y2,22). If [[V]1 = [W]1 = ),
172 <0, y192 <0, and z1,20 > 0, then

IV =W =2\ — min{z;, z2}).

Proof. Suppose V,W € R? with V = (21,y1,21), W = (22,92, 22), [|[V]1 = W1 = \, 2122 <0, 1192 < 0,
and z1,z2 > 0. After reflections about coordinate planes and relabeling V' and W, we can assume without
loss of generality that x1,y1 > 0, x2,y2 <0, and 21 < z5.

Therefore, 1 + y1 = A — 21 while —x9 — yo = A — 25, hence
|V =Wl = (21 —x2) + (y1 — y2) + (22 — 21)
=A—z1+A—2+ 29— 21
= 2()\ — 21),

and the lemma follows. O

Lemma 5.3. Suppose V,W € R3 with V = (z1,y1,21), W = (—22,92,22), [[VI1 = |[W]1 = X, and
122, Y1Y2, 2122 > 0. If |V = W1 = A, then |z < A/2.

Proof. Suppose V,W € R3 with V' = (z1,y1, 21), W = (=22, ¥2, 22), |V |1 = [[W]1 = \, 7122, y192, 2122 > 0.
After reflecting about coordinate planes and scaling, we can assume 1, Z2,¥y1, Y2, 21,22 > 0, and A = 2. If
[V —=W]||; = 2, then the largest possible value of y3 + 22 is y1 + 21 + 2 — (21 + x2). However, since ||[W]|; = 2,
we must have yo+29 = 2—x9, hence 2—xs < y1 421 +2— (21 +x2), which rearranges to 1 < y1+29 = 2—x1,
hence x1 < 1, as required. O

We now establish the unique optimality of A3(1) by conducting a case analysis based on the concentration of
the points of P, apart from the southernmost point, on the four faces of a single closed upper ¢*-hemisphere.



Proof of Theorem 2.6. Suppose P C R3 determines a single ¢!-distance A, and choose a point ¢ € P that
minimizes the z-coordinate. By translating and dilating, we can assume without loss of generality that
¢ = (0,0,0) and A = 2, and hence the remaining elements of P are all contained in the closed upper ¢!-
hemisphere H of radius 2 centered at (0,0,0). We note that the southernmost point of Az(1) is (0,0, —1),
so our end goal in this proof is to show that |P| < 6 unless P is A3(1) shifted up by 1.

We consider the different ways that P can be concentrated on the faces of H. To this end, we define
Hii ={(z,y,2) € H:z,y >0} and Hy_ = {(x,y,2) € H: z > 0,y < 0}, with analogous definitions for
H_, and H__. We refer to the pair Hy ., H__ as opposite faces, and likewise for Hy_, H_. The three
lemmas proven at the beginning of this section allow us to make the following assertions:

(i) For any pair of distinct points U = (x1,y1,21),V = (%2,y2,22) € PN H, with U and V lying on
opposite faces, we have by Lemma 5.2 that min{zy, 25} = 1.

(ii) For any pair of distinct points U = (z1,y1,21),V = (22,¥y2,22) € PN H, with U and V lying on the
same face, we have by Lemma 5.1 that max{|x; — 22|, |y1 — y2], |21 — 22|} = 1.

(iii) For distinct points U = (x1,y1,21), V = (22,y2,22) € PNH, withU € Hy, and V € H_, we have by
Lemma 5.3 that x; < 1. Similarly, by permuting coordinates, if U € H, and V € H,_, then y; < 1.

If |P| > 6, then at least five points of P lie on H, and in particular the sizes of the four intersections of
P with the respective faces of H must add to at least five. Therefore, the only possible arrangements of
P N H include either three points on a single face, or two points on one face and a point on the opposite
face. Further, the proof is greatly simplified in the case that the “north pole” (0,0,2) € P, so we divide the
argument into the following three cases:

e Case 1: (0,0,2) € P.

e Case 2: (0,0,2) ¢ P, and P contains three points U, V, W € H such that U and V lie on the same
face, and W lies on the opposite face.

e Case 3: (0,0,2) ¢ P, and there exists a face of H containing at least three points of P.

Proof for Case 1: Let V = (0,0,2). For Q = (z,y,2z) € (PN H)\ {V}, we have by (i) that z = 1. In
particular, the elements of P other than (0,0,0) and (0,0,2) take the form (z,y,1) with |z|] + |y| = 1, and
all pairs are separated by ¢'-distance 2. By Theorem 2.5, there can be at most four such elements, and the
only choice of four that works is (1,0,1), (—1,0,1), (0,1,1), and (0,—1,1). The resulting arrangement is
As(1) translated up by 1, which establishes Theorem 2.6 in this case.

Proof for Case 2: After reflecting about coordinate planes, we can assume that U,V € Hy and W € H__.
Letting U = (x0, Y0, 20), V = (21,41, 21), and W = (2, y2, 22), we have by (i) and (ii) that

max{|xo — z1|, |yo — v1], |20 — 21|} = min{zg, 20} = min{z1, 20} = 1.

In particular, all three z coordinates are at least 1, and since (0,0,2) ¢ P, we have |29 — z1| < 1. Therefore,
we simultaneously know that 0 < xg, 21, y0,y1 < 1 and max{|zg — yol, |z1 —y1|} = 1.

This implies that (after potentially relabeling) either U = (1,0,1) and V = (0,y,2—y) for some 0 < y < 1 or
U= (z,0,2—z) forsome 0 <z <1land V =(0,1,1). In either case, U € H . NH,_,and V € Hy .\ NH_,
so P contains at least one element on every face of H. Therefore, by (i), all points of P lying on H have
z-coordinate at least 1. Further, by the same reasoning as above, there are at most two points of P on
each face, and the only way two points of P can lie on the same face is if they lie on opposite sides of the
boundary, as with U and V. In particular, at most four points of P lie on H, and hence P contains at most
five points in total.

Proof for Case 3: This case gets a bit stickier, because, as some trial and error reveals, there are a variety
of possible arrangements of three points on a single face of H that are all separated by £!-distance 2.
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Focusing on H  for the sake of exposition, we see that our desired configuration of {(1,0, 1), (0,1, 1), (0,0,2)}
is merely one member of a family of arrangements obtained from the following process:

e Choose zg, Yo, 20 > 0 with 2o + 3o + 20 < 1, and let « =1 — (29 + yo + 20)

e Starting from (z, yo, 20), construct a point by adding 1 to one coordinate and « to another coordinate
(so the coordinates add to 2), then produce two additional points in a similar way by rotating the
original choice of coordinates. For example, the initial choice of U = (2o + 1, %0 + @, z0) uniquely
determines the two additional points V' = (20,90 + 1,20 + @) and W = (2o + o, yo, 20 + 1). All
of these points lie on H,,, and by (ii) they are all separated by ¢!-distance 2. In fact, the only
other possible set of three points yielded by this process (up to labeling) is U = (2o + 1, yo, 20 + @),
V = (xo+ a,y0 + 1,20), and W = (z0,y0 + @, 20 + 1). For additional clarity, a specific example
is xg = 0.1, yo = 0.3, zp = 0.4, hence o = 0.2, which could yield the three-point arrangements
{(1.1,0.5,0.4), (0.1,1.3,0.6), (0.3,0.3,1.4)} or {(1.1,0.3,0.6), (0.3,1.3,0.4), (0.1,0.5,1.4) }.

We hope to demystify the situation by arguing that the arrangements discussed above are in fact the only
possible arrangements. To this end, after reflections, we can assume P contains three points U, V,W € H, ,,
and we settle Case 3 with the following steps:

e Step 1 : Show that U, V,W take the form discussed above. In particular, after specifying the
minimum values of each coordinate and a single point, the second and third points are uniquely
determined, hence there cannot be a fourth point in P N H, 4.

e Step 2: Show that P can contain at most one point in (Hy_ U H_,) \ H;4 before necessarily
reducing to Case 2. This means that any hypothetical fifth point of P N H necessarily lies on H__,
which itself reduces the argument back to Case 2.

Step 1: Let g, yo, and zp be the minimum z, y, and z-coordinates, respectively, attained by U, V', and W.
In what follows, we repeatedly appeal to (ii), which tells us that for every pair of points in {U,V, W}, the
maximum coordinate distance is exactly 1. In particular, the maximum =z, y, and z-coordinates attained by
U,V,and W are at most o+ 1, yo+ 1, and zy + 1, respectively, and we begin by arguing that this inequality
must be equality in all three coordinates.

Suppose that this inequality is strict in at least one coordinate. By permuting coordinates and relabeling
points we may assume that U = (z9, y, z), and neither of V and W has z-coordinate ¢ + 1. Therefore, the
maximum coordinate distance of 1 required by (ii) must occur in either the y or z-coordinates, and since zg
is the minimum z-coordinate, V' and W must both take one of the following forms: (zo+a,y—1,z+(1—a))
for some 0 < o < 1, or (zg+ B,y + (1 — 3),2 — 1) for some 0 < 8 < 1. However, no combination of these
choices for V and W have a maximum coordinate distance of 1 from each other, so this arrangement is
impossible. Therefore, all the maxima zg + 1, yo + 1, and zp + 1 are indeed achieved. For the remainder of
the proof, we will refer to the respective coordinate values xg, yg, and zg as minimum coordinates, and we
will similarly refer to the respective coordinate values zg + 1, yo + 1, 29 + 1 as mazimum coordinates. We
complete step one by considering the following three subcases.

e Subcase A: Two maximum coordinates appear simultaneously in a single point.

Since all the points have ¢'-norm 2, this subcase necessitates that xg = yo = 2o = 0, and we as-
sume without loss of generality that U = (1,1,0). Since the minimum x and y coordinates of 0
must be attained, {V, W} contains points of the form (z,0,2 — x) and (0, y,2 — y), respectively, for
some 0 < z,y < 1. However, since the maximum z-coordinate is 1, the only admissible choices are
x = y = 1, hence the three points are (1,1,0), (0,1,1), and (1,0, 1), which take the required form
with a = 1.
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e Subcase B: Two minimum coordinates appear simultaneously in a single point.

Assume without loss of generality that U = (zo, yo, 2). Since xg and yp are minimum coordinates,
each of V' and W must take the form (z¢ + a,yo + 5,2z — (o + B)) for some a, 8 > 0, and by (ii)
we must have a + 8 = 1. Further, since the z-coordinate of both V and W is z — 1 (which is hence
the minimum coordinate zp), the maximum coordinate distance of 1 must occur in the first two co-
ordinates, meaning that {V, W} = {(x0 + 1, y0, 20), (€0, %0 + 1, 20)}. In particular, the arrangement
takes the required form with o = 0.

e Subcase C: Exactly one minimum coordinate and one maximum coordinate occurs in each point.

After permuting coordinates and relabeling points we assume U = (2o + 1, yo + @, 29) where 0 < o =
1—(zo+yo+20) < 1. In order to meet the subcase conditions, have a maximum coordinate distance
of 1 from U, and have ¢!-norm 2, the options for V- and W are (xo,yo + 1, 20 + ), (2o, %0+, 20 + 1),
and (zo + «,yo,20 + 1). Of these three possibilities, there is only one pair that are separated by
(-distance 2 from each other, hence {V, W} = {(z0,y0 + 1, 20 + @), (20 + , 90, 20 + 1)}, as required.

Step 2: Suppose P contains a point @Q € H_4 \ Hi; (the argument is completely analogous for @ €
H,_\ Hy). By (iii), in order for @ to be separated from U = (zg + 1, yo + @, 29) by ¢!-distance 2, we must
have zo + 1 < 1, and hence 2y = 0. In particular, V = (0,350 + 1,20 + @) € PN (H_ N Hy ), so P contains
at least two points on H_,. This means that, in order to avoid reducing to Case 2, P cannot contain any
elements of H, _.

If instead P contains a second point R € H_, \ H;y, hence a third point in H_, then we fall back to
our previous analysis of three points on a single face, adapted by taking negatives of all z-coordinates. In
particular, because V has z-coordinate 0, which minimizes the z-coordinate in absolute value among the
points in PN H__, either ) or R must maximize the z-coordinate in absolute value and have z-coordinate
—1. Assuming @ has z-coordinate —1, in order for Q to be separated from U = (1,9 + o, z9) by ¢*-distance
2, we must have @ = (—1,y0 + «,20). In order for {V,Q, R} to meet the required form for three points
of P on H_, established in Step 1, we must have R = (—«, yo, 20 + 1). However, in this case we see that
IU = R|l1 =2+ 2a = 2, hence o = 0, which contradicts the assumption that R ¢ H, . O

6. CONDITIONAL RESULTS IN HIGHER DIMENSIONS

In the remainder of our discussion, we use the terms ¢'-sphere and ¢!'-ball as before, defined analogously
to regular spheres and balls in R?, with the usual distance replaced by ¢!-distance. In an effort to establish
results in higher dimensions, we make the following observations, heavily inspired by our journey thus far:

(a) As noted at the beginning of Section 5, our proof of Theorem 2.5 does not naturally generalize to higher
dimensions, because in dimension d > 3, it is not necessarily the case that if the largest ¢!-distance
determined by a finite set P C R? is ), then P is contained in a closed ¢'-ball of diameter A. However,
the argument in Lemma 4.3 does generalize to all dimensions: the distance A can be removed from an
£'-ball of diameter A\ by removing the closed upper ¢!-hemisphere. In particular, if we somehow could
capture our set inside such a ball, then by mimicking the proof of Theorem 2.5, the problem is reduced
to determining maximal configurations of points arranged on single closed upper ¢'-hemisphere, which
would then facilitate an induction on the number of distinct distances.

(b) Suppose P C R? is a finite set determining at most k distinct ¢!-distances, with largest ¢'-distance \. By
translating and scaling, we can assume that A\ = 2k and the “southernmost point” of P, minimizing the
x4 coordinate, is —key, where e4 is the d-th standard basis vector. An enticing observation, particularly
in juxtaposition with (a), is the following: if ke is also in P, then, since 2k is the largest ¢!-distance,
P is contained in the intersection of the closed ¢!-ball of radius 2k centered at —key and the closed ¢1-
ball of radius 2k centered at key, which is conveniently the closed £!-ball of radius k centered at the origin.
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(c) Inspired by the simplicity of Case 1 in the proof of Theorem 2.6, we see that if U lies on an upper
£'-hemisphere H C R?, then the ¢'-distance between U and the “north pole” of H is determined entirely
by the x4-coordinate of U. More specifically, if H is the closed upper ¢'-hemisphere of radius k centered
at the origin and U = (x1,...,x4) € H, then

||U—k‘€d||1 = |l‘1| —+ -+ |.13d_1‘ +k—x4= Q(k‘—l‘d).

In particular, if keq € P and P determines only k distinct ¢!-distances {\;}¥_,, then the points of
(PN H)\ keg are restricted to the hyperplanes {zq = ¢;} for 1 <14 < k., where ¢; = k — \;/2. Further,
the intersection of H with the hyperplane {z4 = ¢;} is

{1, . yzamr,c) oo 4 A zao1| = k — ci},

which is a copy of the ¢!-sphere of radius k — ¢; centered at the origin in R4~!. This would allow us to
analyze PN H by inducting on dimension, analogous to the invocation of Theorem 2.5 during Case 1 in
the proof of Theorem 2.6.

These three items combine to a clear aspirational reality: given a finite set P C R% that determines at most
k distinct #'-distances, the largest of which is ), letting H denote the closed upper ¢!-hemisphere of radius
A centered at the “southernmost” point of P, we could fully adapt the proof of Theorem 2.5 and induct on
both d and k, if only we could assume that the “north pole” of H is also in P. If we were considering the
usual Euclidean distance, this would be no obstruction at all, as we could rotate our set and assume without
loss of generality that the largest distance A occurs parallel to the z4-axis. However, since £'-distance is not
invariant under rotation, we require an additional assumption to establish a conditional version of Conjecture
2.7. The following definition, conjecture, and theorem fully formalize this conditional result, after which we
conclude our discussion.

Definition 6.1. Given P C R? and an ¢'-distance A > 0, we say that A\ occurs in an azis-parallel direction
if there exists © € P and 1 < ¢ < d such that x + Ae; € P, where e; is the i-th standard basis vector.
Further, if P is bounded, we say that P is azis-parallel if the largest ¢'-distance determined by P occurs in
an axis-parallel direction.

Conjecture 6.2. Suppose d,k € N. If P is of mazrimal size amongst subsets of RY determining at most
k distinct 0'-distances, then P is axis-parallel. The same holds within the class of sets contained in an
0 -sphere in R?.

Theorem 6.3. Conjecture 6.2 implies Conjecture 2.7.

Proof. We proceed via two inductions, one on the dimension d and another on the number of distinct £!-
distances k. We streamline the argument by defining the following propositions for each d € N and each
nonnegative integer k:

e Opt(d, k): Ag(k) is the unique set, up to ¢'-similarity, of maximal size amongst subsets of R? de-
termining at most k distinct ¢!-distances. Conjecture 2.7 is precisely the statement that Opt(d, k)
holds for all d, k € N.

e S-Opt(d, k): Ag(k)\ Ag(k — 2) is the unique set, up to ¢! similarity, of maximal size amongst sets
contained in an ¢'-sphere in R? determining at most k distinct ¢*-distances. For k = 0 or 1, we take
the convention that Ag(—1) = Ayz(—2) = 0.

e H-Opt(d, k): Let H denote the closed upper £!-hemisphere of radius k centered at the origin in R
If keq € E C H and E determines at most k distinct ¢!-distances, the largest of which is 2k, then
|E| < |Aq(k) N H|, and |E| = |Aq(k) N H| if and only if E = Ag(k) N H.

For the necessary base cases, we note that S-Opt(1, k) and H-Opt(1, k) trivially hold for all ¥ € N as ¢!-

spheres and ¢*-hemispheres in R contain just two points and one point, respectively. Also, Opt(d,0) holds

trivially for all d € N because a set determining no ¢!'-distances contains at most a single point. Under the

assumption that Conjecture 6.2 holds, we verify Conjecture 2.7 by establishing the following implications:
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(1) S-Opt(d — 1,k) for all k € N = H-Opt(d, k) and S-Opt(d,k) for all k¥ € N, so S-Opt(d, k) and
H-Opt(d, k) hold for all d, k € N.

(2) Opt(d,k — 1) and H-Opt(d, k) = Opt(d, k), so Opt(d, k) holds for all d, k € N, as required.

Proof of (2): Fix d,k € N, and suppose Opt(d, k — 1) and H-Opt(d, k) hold. Suppose P C R¢ determines
at most k distinct ¢'-distances, and has maximal size amongst sets with this property. By scaling we can
assume that the largest ¢'-distance determined by P is 2k, which by Conjecture 6.2 we know occurs in an
axis-parallel direction. After permuting coordinates and translating, we can assume that —keq, keq € P. As
noted in (b), this implies that P is contained the closed £!-ball of radius k centered at the origin. To verify
this, suppose U = (z1,...,24) € P with ||U||; > k. If x4 > 0, then ||U — (—keq)||1 = ||U|l1 + k > 2k, while if
x4 < 0, the same holds for the ¢!-distance between U and keg, contradicting the fact that 2k is the largest
¢'-distance determined by P.

As noted in (a), the ¢!-distance 2k can be eliminated from P by removing the points in P N H, where
H is the closed upper ¢!-hemisphere of radius k centered at the origin. This is because, within a closed
0'-ball of radius k, the ¢'-distance 2k only occurs between pairs of points on opposite faces of the boundary.
By H-Opt(d, k), we know that |[P N H| < |Aqg(k) N H|, and further |P N H| = |Aq(k) N H| if and only if
PN H = Agy(k) N H, in which case the ¢!-distances determined by P are 2.4, ..., 2k.

Because the ¢!-distance 2k does not occur in P\ H, we have that P\ H determines at most k — 1 distinct
¢*-distances. By Opt(d,k — 1), we know that |P\ H| < |A4(k — 1)|, and further |P\ H| = |A4(k — 1)] if and
only if P\ H is ¢!-similar to Ag(k —1). In order for both PN H and P\ H to attain their maximum possible
sizes, the ¢!-distances determined by P\ H must be 2,4,...,2k — 2. In this case, since an ¢!-similar copy of
Ag(k — 1) is uniquely determined by its “south pole” and its largest distance, we know that P\ H must be
Aq(k — 1) shifted down by 1. In other words,

P\H ={(x1,...,0q—1) €Z%: |xy| + -+ |zg| <k —1, 214+ +24=k — 1 (mod 2)}
={(x1,...,2q) €Z%: 1|+ +|zg+ 1| <k —1, 21+ -+ 24 =k (mod 2)}.

The latter description ensures that P\ H C Ay(k) \ H, and conversely, if U = (z1,...,zq4) € Ag(k) \ H,
then either x4 < 0 or ||U||1 < k — 2. In either case |z1| + -+ + |24+ 1| < k — 1, and hence U € P\ H.
Bringing everything together, we have that if PN H and P\ H both attain their maximum possible size,
then PN H = Aq(k) N H and P\ H = Ay(k) \ H, hence P = A4(k), so Opt(d, k) holds.

Proof of (1): Fix d > 2, suppose S-Opt(d — 1,k) holds for all k € N, and fix k € N. Suppose P C R?
is contained in the ¢'-sphere S of radius k centered at the origin, and that P has maximal size amongst
all such sets determining at most k distinct ¢-distances. To establish S-Opt(d, k), we must show that
P = A4(k) \ Ag(k —2). Thanks to our inductive hypothesis, we can assume P determines exactly k distinct
¢'-distances, not fewer, and we denote those ¢!-distances by A\; < --- < Ar. By the £!-sphere component of
Conjecture 6.2, we know that Ay occurs in an axis-parallel direction. By permuting coordinates, we assume
that Ap occurs in the last coordinate direction, in other words (z1,...,2q),(21,...,24 + Ax) € P for some
Z1,...,2q4 € R with |z| + -+ + |xg| = |x1| + -+ + |x4 + Ak| = k, which in particular forces 4 = —\/2 and
|z1| + -+ + |za—1| = k — Mg /2. This transformation is allowable because our end goal, Ag(k) \ Ag(k — 2), is
invariant under coordinate permutation.

We argue (informally for the moment) that the only reasonable choice is A\, = 2k and 1 =-+- = x4-1 =0,
meaning key, —keq € P. This is because, since A is the largest ¢!-distance, P is contained in the intersection
of the closed ¢!-balls of radius )\ centered at (z1,...,74-1,—Ax/2) and (x1,...,24-1, \r/2), respectively,
and this intersection is the £!-ball of radius A /2 centered at (x1,...,24_1,0). However, P is also contained
in S, so if it is not the case that Ay = 2k, then P would in fact be contained in the intersection of an
0'-sphere with a closed ¢'-ball of a smaller radius, which is at most a closed ¢'-hemisphere. The idea that a
maximal subset of an ¢'-sphere determining at most &k distinct ¢'-distances could actually be contained in a
closed ¢'-hemisphere is intuitively suspect, and we return to this issue near the end of the proof. For now,
we assume —keq, keg € P.
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We let H denote the closed upper ¢*-hemisphere of S, and we establish H-Opt(d, k) along the way. As
discussed in (c), all the points of (P N H) \ key have x4-coordinates in the list ¢; > ca > -+ > ¢, where
¢i = k — \;/2. For each ¢;, the points of H with x4-coordinate equal to ¢; take the form (x1,...,24-1,¢;)
where |z1|+ -+ |r4_1] = k —¢;, and we refer to the set of such points as S;. With regard to ¢!-distances, S;
is equivalent to an ¢'-sphere in R4, centered at the origin with radius k — ¢;. All ¢!-distances determined
by PN S; are at most 2(k — ¢;) = A, so PN S; determines at most i distinct ¢!-distances. By our inductive
hypothesis, [P N S;| < [Ag—1(7)] — |Ag—1(i — 2)|, with equality holding if and only if the projection P N S;
onto the first d — 1 coordinates is ¢!-similar to Ag_1(i) \ Ag—1(i — 2), so in particular Ai,...,)\; form an
arithmetic progression. Since k — z; = A;/2 and A\ = 2k, this equality holds for all 1 < ¢ < k if and only if
PNnS;={(z,k—i):x € ANg_1(i) \ Ag—1(¢ — 2)} for all 1 < ¢ < k. Here we note that if it were not the case
that keg, —keq € P as previously assumed, then P N.S; would be, at most, equivalent to an £*-hemisphere in
R?~1  in which case our inductive hypothesis would prohibit it from having [Ag_;(7)| —|Ag_1(i —2)| elements.

In summary,

k

(4) IPAH|<Y [Aa1 ()] = [Aa-a(i = 2)],
=0

taking Ag—1(—1) and Ag—1(—2) to be empty, and equality holds if and only if
k
PnH=J{(x,k—i):2 € Aa1(i) \ Aa—1(i — 2)} = Aa(k) N H,
=0
which establishes H-Opt(d, k).
Further, P N H can contain at most Zi:ol [Ag—1(?)| — |[Aq—1(i — 2)| points with x4 > 0. Letting H’ denote

the closed lower ¢!-hemisphere of S, we employ the identical reasoning as above to yield the same upper
bound (4) on |P N H'|, with equality holding if and only if

k
PrH = J{zi—k):2€Aha1(i)\ Mg (i —2)} = Ag(k) N H.
i=0
Further, P N H’ can contain at most Zi.:ol [Ag—1(7)] — |Ag—1(i — 2)| points with z4 < 0. Putting all this

together, we have

|P|=|Pn(H\H)|+|Pn(H\H)|+|PNHNH

=0

k—1
<2 (Z [Aa—1(D)] = |Aa—a(i - 2)I> + ([Ag—1 (k)| = [Aa—a(k = 2)]),

and equality holds if and only if

k
P=|J {(zi): 2 € Agor (k= |i)) \ Aa1(k — |i| = 2)} = Aq(k) \ Aa(k — 2).
i=—k
Therefore, S-Opt(d, k) holds, and the induction on dimension is complete. O

Remark. If one is specifically interested in dimension d = 3, then, because we have fully resolved the
problem in dimension d = 2, no inductive hypothesis is needed for dimension, just for the number of £'-
distances. In other words, if Opt(3, k — 1) holds, then Az(k) is the unique set, up to ¢!-similarity, of maximal
size amongst axis-parallel subsets of R? determining at most k distinct ¢'-distances. In particular, because
Theorem 2.6 tells us that O(3,1) holds, we know that A3(2), which contains 19 points and is pictured in
Figure 1b, is uniquely optimal amongst axis-parallel sets determining only two ¢!-distances. However, we
cannot make the analogous claim for A3(3), because we cannot exclude the possibility of a non-axis-parallel
set determining two ¢!-distances that contains more than 19 points (or that contains exactly 19 points but is
not ¢!-similar to Az(2)). This possibility disables our bridge from two ¢!-distances to three, and exemplifies
the need in assuming Conjecture 6.2 if we wish to glean additional information in dimension d > 3.
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