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Abstract. Motivated by the gentle exploration of the distribution of prime numbers typical of an under-
graduate number theory course, as well as by a recent breakthrough result in arithmetic combinatorics, we

explore connections between the counting function CA(x) = |A ∩ [1, x]| and the reciprocal sum function
SA(x) =

∑
n∈A∩[1,x] 1/n for a set A ⊆ N.

1. Introduction

One of the most ubiquitous proofs of the infinitude of the prime numbers (perhaps second only to Euclid’s
proof) is due to Euler, in which the divergence of the harmonic series

∑∞
n=1 1/n is shown to imply the

divergence of the series
∑
p 1/p, where the latter sum is taken over primes. In fact, a more quantitative, but

nearly as elementary, version of this proof, using the bound
∑
n≤x 1/n > log x, yields the lower bound

(1)
∑
p≤x

1

p
> log log(x)− 1

for all x > 1, which turns out to be a rather accurate estimate for the partial reciprocal sums over the
primes. Here and throughout this paper, we use log to denote the natural logarithm, the summation limit
n ≤ x refers to the natural numbers in that range, while p ≤ x refers to the primes in that range. We take
the convention that the set of natural numbers, N, starts at 1.

While (1) is quite satisfying, more detailed investigation into the distribution of prime numbers typically
involves estimates on the prime counting function π(x), the number of primes that are at most x. The cele-
brated prime number theorem says that π(x) is well-approximated by x/ log x, and more accessible theorems
of Chebyshev provide upper and lower bounds of this order of magnitude, but all require considerably more
effort than (1). Since the derivation of (1) (included later) is so low-tech, it is tempting to inquire as to what
information about π(x), aside from its tendency toward infinity, can be gleaned from (1) and (1) alone.

Skipping ahead some centuries, Bloom and Sisask [3] recently made headlines by settling the first nontrivial
case of a longstanding conjecture of Erdős. They showed that if A ⊆ N and

∑
n∈A 1/n diverges, then A

contains a nontrivial three-term arithmetic progression (3AP), in other words a set of the form {n, n+d, n+
2d} for some n, d ∈ N. Presented with this formulation out of context, it is natural to wonder how the
divergence of the reciprocal sum over the elements of A is directly utilized in the proof. In fact, the answer
is not at all, and the result stated in this form is a bit misleading. What is actually achieved is strictly
stronger, a highly-anticipated upper bound on the counting function of a set lacking 3APs.

Framed by these two motivating contexts, one classical and one cutting edge, we investigate the relation-
ship between counting functions and reciprocal sums for sets of positive integers. We consider the extent
to which an estimate on one of these functions informs the other, and we construct extreme examples to
test the boundaries of our observations. Reciprocal sums as descriptors for sets of positive integers were
explored previously by Bayless and Klyve in a 2013 Monthly article [1], but that article focuses on estimates
for specific, convergent reciprocal sums, and has little overlap with our discussions here.

2. Preliminaries

We begin by introducing our key players.
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Definition 1. For a set A ⊆ N and x ≥ 1, we define the counting function CA(x) = |A ∩ [1, x]| and the
reciprocal sum function SA(x) =

∑
n∈A∩[1,x] 1/n. Here and throughout we use |X| to denote the number

of elements of a finite set X. Further, when making shorthand asymptotic statements involving these or
related functions, such as SA(x)→∞ or CA(x)/x→ 0, we refer to the behavior as x tends to infinity.

All proofs throughout the paper require only basic calculus and make frequent use of the following two facts:

• Harmonic Series Estimate: For all x ≥ 1 we have

(2) log x <
∑
n≤x

1

n
≤ log x+ 1.

Better estimates for large x are possible, but these are the bounds yielded by the most straightfor-
ward method of drawing 1× 1/n rectangles and comparing the resulting area to the area under the
graph of 1/t for 1 ≤ t ≤ x.

• Partial Summation: If {bn}n∈N is a sequence of real numbers and ψ : [1,∞)→ R is continuously
differentiable, then ∑

n≤x

bnψ(n) = B(x)ψ(x)−
∫ x

1

B(t)ψ′(t)dt,

where B(x) =
∑
n≤x bn. This formula is a convenient discrete-continuous hybrid analog of integra-

tion by parts, and can be obtained by writing bn as B(n) − B(n − 1), writing ψ(n + 1) − ψ(n) as∫ n+1

n
ψ′(t)dt, and noting that B(n) = B(t) for n ≤ t < n+1. We will exclusively apply this formula

in the case that bn is the indicator function of a fixed set A ⊆ N (meaning 1 if n ∈ A and 0 if n /∈ A)
and ψ(x) = 1/x. In this case, we have

(3) SA(x) =
CA(x)

x
+

∫ x

1

CA(t)

t2
dt.

3. A Quick, Accurate “Lower Bound” for π(x)

As promised, in order to keep our discussion complete and self-contained, we include a derivation of (1),
the product of an only slightly more careful version of Euler’s proof of the infinitude of the primes. This
serves as a remarkably obstacle-free path to a quite accurate lower bound on the reciprocal sum over the
primes, common and ideal for an undergraduate number theory course. For example, the proof below is very
similar to one found in Chapter 1, Section 4 of [12].

Proposition 1.
∑
p≤x 1/p > log log(x)− 1 for all x > 1.

Proof. Fix x > 1. For each prime p ≤ x, let sp(x) = 1 + 1/p + 1/p2 + · · · + 1/pj , where pj is the largest
power of p that is at most x. By the distributive property, and the fact that each natural number n ≤ x has
a factorization into prime powers (we do not even need that such a factorization is unique), the term 1/n
for each n ≤ x appears in the expanded product

∏
p≤x sp(x), so this product exceeds

∑
n≤x 1/n. By the

geometric series formula, sp(x) ≤
∑∞
k=0 p

−k = 1 + 1/(p− 1). Further, we have

1 + t = 1 +

∫ t

0

du ≤ 1 +

∫ t

0

eudu = et

for all t ≥ 0. Writing et as exp(t) when convenient, these facts combine with (2) to yield

log x <
∑
n≤x

1

n
≤
∏
p≤x

sp(x) ≤
∏
p≤x

(
1 +

1

p− 1

)
≤
∏
p≤x

exp(1/(p− 1)) = exp

∑
p≤x

1

p− 1

 ,

so in particular

(4)
∑
p≤x

1

p− 1
> log log x.
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Finally, we use a telescoping series to observe that∑
p≤x

1

p− 1
− 1

p
≤

∑
2≤n≤x

1

n− 1
− 1

n
<

∞∑
n=2

1

n− 1
− 1

n
= 1,

which when subtracted from (4) completes the proof. �

Less standard is the following application of (3), which says that any set A ⊆ N satisfying something like
(1), not necessarily the primes, must contain nearly n/ log n of the first n natural numbers infinitely often.

Proposition 2. If A ⊆ N and SA(x) > log log(x)−C for a constant C and all x > 1, then for every ε > 0,
CA(n) ≥ (1− ε)n/ log n for infinitely many n ∈ N.

Proof. Fix A ⊆ N. We proceed contrapositively by assuming that there exists ε > 0 and n0 ∈ N such that
CA(n) ≤ (1 − ε)n/ log n for all integers n ≥ n0. Further, since x/ log x is increasing and CA(x) = CA(bxc),
we in fact have CA(x) ≤ (1− ε)x/ log x for all x ≥ n0. Therefore, by (3) and the trivial bound CA(t) ≤ t, we
have

SA(x) ≤ 1 +

∫ n0

1

1

t
dt+

∫ x

n0

(1− ε)
t log t

dt ≤ 1 + log(n0) + (1− ε) log log x

for all x ≥ n0. In particular, SA(x) < log log(x) − C provided ε log log x > C + 1 + log n0, which holds for
x > exp(exp((C + 1 + log n0)/ε)). �

While the nonuniformity in the lower bound provided by Proposition 2 certainly makes it much weaker than
a global statement of the form π(x) ≥ x

log x (1 + o(1)), it does say something of definitive note: if there is to

be a nice global approximation of π(x), it cannot be asymptotically smaller than x/ log x. This is perhaps
the fastest, most elementary path to a statement of this strength about π(x) with the correct leading term,
and it makes for a fruitful follow-up to Proposition 1 in an undergraduate course, either in class or as an
exercise, as an alternative to more intimidating endeavors.

4. Reciprocal Sums and Arithmetic Progressions

In 1936, Erdős and Turan [5] conjectured that if A ⊆ N contains no 3APs, then CA(x)/x → 0 (in other
words A has density 0), a result proven by Roth [13], now known as Roth’s Theorem (not be confused with
the Diophantine approximation result of the same name; but it is indeed the same Roth, he was amazing!).
The conjecture was generalized to replace 3AP with kAP for any fixed k ∈ N, a result proven by Szemerédi
[14], now known as Szemerédi’s Theorem. Since any set satisfying

∑
n∈A 1/n <∞ also satisfies CA(x)/x→ 0

(see Proposition 7), the following conjecture of Erdős calls for a strengthening of Szemerédi’s Theorem.

Conjecture 1 (Erdős). If A ⊆ N contains no k-term arithmetic progression for some k ∈ N, then
∑
n∈A 1/n

converges. Equivalently, if
∑
n∈A 1/n diverges, then A contains arbitrarily long arithmetic progressions.

Remark. Conjecture 1 is sometimes colloquially referred to as the Erdős-Turán Conjecture, despite it orig-
inating from Erdős alone, owing to its connection with the previous work of Erdős and Turán, and the
fact that Erdős offered a prize for its resolution in memoriam after Turán’s death in 1976. For a detailed,
well-referenced discussion of this discrepancy in nomenclature, the interested reader may refer to [11].

In the intervening decades, an extensive literature, central to the field of arithmetic combinatorics, has
developed on sets without arithmetic progressions. The aforementioned breakthrough of Bloom and Sisask
on 3APs, which we state properly below, is the first resolution of a nontrivial case of Conjecture 1.

Theorem 1 (Bloom-Sisask, [3]). There exists C > 0 and ε > 0 such that if A ⊆ N contains no three-term
arithmetic progression, then

(5) CA(x) ≤ Cx

(log x)1+ε
for all x > 1.
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A pleasing consequence of Theorem 1 is that the primes (which have counting function π(x) ≈ x/ log x),
and relatively dense subsets thereof, contain 3APs. In a qualitative sense, this was already known to be
true for kAPs for all k (due to Green [7] for k = 3 and Green and Tao [9] for k > 3), but Theorem 1
assures that the primes contain 3APs for density reasons alone, independent of any other properties. The
connection between Theorem 1 and Conjecture 1 comes from (3) and the fact that the improper integral∫∞
2

1
t(log t)1+ε dt happens to converge, while without the ε it diverges, both observable with the substitution

u = log t. Therefore, if A ⊆ N contains no 3AP, then A satisfies (5), hence
∑
n∈A 1/n converges by (3).

Contrapositively, if
∑
n∈A 1/n diverges, then A must contain a 3AP.

However, reciprocal sums are not utilized in the proof of Theorem 1, and it is not known if the “true”
maximum growth rate of CA(x) for a set lacking 3APs (or kAPs for larger k) is anywhere near this “breaking
point” of around x/ log x for convergent versus divergent reciprocal sums. In fact, the best constructions
of large sets lacking 3APs, dating back to Behrend [2], satisfy CA(x) ≥ x exp(−C

√
log x) for a constant C.

This lower bound, while impressively large (asymptotically greater than x1−ε for any fixed ε > 0), is still
much smaller than the right hand side of (5). Meanwhile, the best-known upper bounds for sets lacking
kAPs for k > 3 take the form CA(x) ≤ Cx/(log x)c for k = 4 (due to Green and Tao [8]), where C, c > 0 are
constants, and CA(x) ≤ Cx/(log log x)ck , where ck > 0 depends on k, for k > 4 (due to Gowers [6]). All of
this is to say: the statement of Conjecture 1 is extremely elegant and attractive, but is likely a red herring
of sorts. By (3), an upper bound of the form CA ≤ C for sets lacking kAPs, where C is a fixed function such
that

∫∞
1
C(t)/t2dt converges, is strictly stronger than Conjecture 1. It is this sort of counting function upper

bound to which the field aspires, as opposed to Conjecture 1 itself.

5. General Bounds and Extreme Constructions

In Section 4, we observed an example of how, via the partial summation formula (3), global information
about the counting function CA immediately yields global information about the reciprocal sum function
SA, for a set A ⊆ N. Conversely, in Section 3, we considered a special case where global information about
SA yielded a weaker, but still notable conclusion about CA. In this section we explore the latter type of
phenomenon in a greater level of generality.

Definition 2. Suppose f : [1,∞) → [0,∞) and A ⊆ N. We say that f is a lim sup lower bound for CA
if, for every ε > 0, CA(xk) ≥ (1 − ε)f(xk) for some sequence xk → ∞. This latter condition in particular
holds if CA(n) ≥ (1 − ε)f(n) for infinitely many n ∈ N, and in fact these formulations are equivalent if f
is increasing, since CA(x) = CA(bxc). For those familiar with the concept of lim sup from analysis, this
definition is equivalent to lim supx→∞ CA(x)/f(x) ≥ 1. We define lim inf upper bound analogously, with
CA(xk) ≥ (1− ε)f(xk) replaced by CA(xk) ≤ (1 + ε)f(xk).

For two real-valued functions f, g, we write f ≤ g if f(x) ≤ g(x) for all x in their common domain. We
refer to such bounds as global. Roughly speaking, one can think of a lim sup lower (resp. upper) bound as a
statement about the failure of global upper (resp. lower) bounds. More specifically, if A ⊆ N and f is a lim
sup lower bound for CA, then no global upper bound of the form CA ≤ g is possible with g asymptotically
smaller than f . We summarize the results that follow below:

(i) As in Proposition 2, global lower bounds (resp. upper bounds) of the form SA ≥ S (resp. SA ≤ S),
with S(x)→∞, imply lim sup lower bounds (resp. lim inf upper bounds) for CA of the “correct” order
of magnitude.

(ii) Global bounds for SA imply global bounds for CA, but of much different magnitude than the lim sup
lower bounds and lim inf upper bounds referred to in the previous item. Further, constructions show
that these “weak” global bounds are essentially sharp and cannot be noticeably improved in general.

(iii) If
∑
n∈A 1/n converges, then CA(x)/x → 0. However, no stronger global upper bound on CA can be

deduced from the reciprocal sum, in the sense that any function f satisfying f(x)/x→ 0 can be a lim
sup lower bound for CA, with

∑
n∈A 1/n arbitrarily small.
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We begin by considering the degree to which the argument in the proof of Proposition 2 was specific to
the functions S(x) = log log x − C and f(x) = x/ log x. In fact, the only properties of these functions used
in the proof is the tendency of S(x) toward infinity, and the relationship f(x) = x2S′(x), which allowed for
S(x) to pop up in the integral in the right hand side of (3). We leave it as an exercise to adapt the steps of
the proof of Proposition 2 to obtain the following generalization, which accounts for item (i) on our list.

Proposition 3. Suppose S : [1,∞) → [0,∞) is continuously differentiable with S(x) → ∞, and let f(x) =
x2S′(x). If A ⊆ N satisfies SA ≥ S (resp. SA ≤ S), then f is a lim sup lower bound (resp. lim inf upper
bound) for CA.

Remark. In Proposition 3 and several that follow, we assume S(x) is defined and nonnegative for x ≥ 1. In
practice, we may want to apply these propositions for functions like S(x) = log log x− C for a constant C,
which is only defined and nonnegative for x ≥ exp(exp(C)). In these situations, the propositions still apply
perfectly well; one can simply redefine S(x) to be 0 until the desired formula can take over.

As we discussed following Proposition 2, the bounds provided by Proposition 3 are pleasingly sharp, but
they do not give global information about the counting function. In the following, we consider the extent
to which one can deduce global information about CA from estimates on SA, which accounts for the first
portion of item (ii) on our list.

Proposition 4. If A ⊆ N and x ≥ 1 then exp(SA(x)− 1) ≤ CA(x) ≤
(

1− 1
exp(SA(x)+1)

)
x.

Proof. Fix A ⊆ N and x ≥ 1. Let n1 < n2 < · · · < nCA(x) be the elements of A ∩ [1, x], so in particular
nk ≥ k for all 1 ≤ k ≤ CA(x). Therefore,

SA(x) =

CA(x)∑
k=1

1

nk
≤
CA(x)∑
k=1

1

k
≤ log(CA(x)) + 1,

and hence CA(x) ≥ exp(SA(x) − 1). For the other extreme, we consider the complement A = N \ A, which
satisfies SA(x) = SN(x)− SA(x). Applying the argument above to A yields

CA(x) ≥ exp(SN(x)− SA(x)− 1) > exp(log(x)− SA(x)− 1) =
x

exp(SA(x) + 1)
.

The claimed upper bound then follows from the fact that CA(x) ≤ x− CA(x). �

The global bounds provided by Proposition 4 are seemingly weak. In the case that SA(x) ≈ log log x,
as with the primes, the conclusion yields c log x ≤ CA(x) ≤ (1 − C/ log x)x for constants C, c > 0. Neither
extreme is particularly close to π(x) ≈ x/ log x, but the following two constructions show that no noticeable
improvements to these global bounds are possible, as promised in the latter portion of item (ii).

Proposition 5. Suppose S : [1,∞)→ [0,∞) is an increasing function satisfying S ≤ SN and

(6) S(n+ 1) ≤ S(n) +
1

n+ 1

for all n ∈ N. If f : [1,∞) → [0,∞) with f(x) → ∞, then there exists A ⊆ N satisfying SA ≥ S and
CA(n) ≤ f(n) exp(S(n)) for infinitely many n ∈ N.

Proof. Fix an increasing function S : [1,∞) → [0,∞) satisfying S ≤ SN and (6). Fix f : [1,∞) → [0,∞)
tending to infinity. We leave it as an exercise that if exp(S(x))/x 6→ 0, then A = N satisfies the conclusion
of the proposition. For the remainder of the proof, we assume exp(S(x))/x→ 0.

Let n0 = 1 and choose an increasing sequence {nk}k∈N of natural numbers satisfying f(nk) ≥ nk−1 and
(nk−1 + 1) exp(S(nk)) < nk for all k ∈ N. Let Ak = N ∩ [nk−1, nk−1 exp(S(nk))], and let A =

⋃∞
k=1Ak. We

see that CA(nk) ≤ nk−1 exp(S(nk)) + 1 ≤ f(nk) exp(S(nk)). To see that SA ≥ S, fix x ≥ 1. Note that we
either have nk−1 exp(S(nk)) < x < nk or nk−1 ≤ x ≤ nk−1 exp(S(nk)) for some k ∈ N. In the former case,

SA(x) ≥
∑

n∈∪kj=1Aj

1

n
≥ 1 +

∑
nk−1<n≤nk−1 exp(S(nk))

1

n
≥ log(nk−1 exp(S(nk)))− log(nk−1) = S(nk) ≥ S(x).
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In the latter case,

SA(x) ≥
∑

n∈∪k−1
j=1Aj

1

n
+

∑
nk−1≤n≤x

1

n
≥ S(nk−1) +

∑
nk−1≤n≤x

1

n
≥ S(bxc) +

1

nk−1
≥ S(x). �

Proposition 6. Suppose S : [1,∞) → [0,∞) is increasing. If f : [1,∞) → [0,∞) with f(x) → ∞, then

there exists A ⊆ N satisfying SA ≤ S and CA(x) ≥ n
(

1− f(n)
exp(S(n))

)
for infinitely many n ∈ N.

Proof. Fix an increasing function S : [1,∞)→ [0,∞) and let S̃ = SN−S. Note that since S is nonnegative, S̃

satisfies S̃ ≤ SN, and since S is increasing, S̃ satisfies (6). Therefore, we can apply Proposition 5 to produce

a set B ⊆ N satisfying SB ≥ S̃ and CB(n) ≤ f(n) exp(S̃(n)) for infinitely many n ∈ N. Let A = B = N \B,

so SB ≥ S̃ implies SA = SN − SB ≤ SN − S̃ = S. Further, CB(n) ≤ f(n) exp(S̃(n)) implies

CA(n) = n− CB(n) ≥ n− f(n) exp(SN(n)− S(n)) > n− f(n) exp(log n− S(n)) = n

(
1− f(n)

exp(S(n))

)
for infinitely many n ∈ N. �

In Proposition 6, we see that if S(x) → ∞, we can take f to be any function that grows more slowly than

exp(S), say f =
√

exp(S), to ensure that the 1− f(x)
exp(S(x)) → 1. In this case, Proposition 6 says, in particular,

that g(x) = x is a lim sup lower bound for CA (or in other words A has upper density 1).

Corollary 1. If S : [1,∞) → [0,∞) with S(x) → ∞, then there exists A ⊆ N such that SA ≤ S and, for
every ε > 0, CA(n) ≥ (1− ε)n for infinitely many n ∈ N.

The results discussed in this section thus far are either restricted to, or most meaningfully applied to,
reciprocal sum functions tending to infinity. One can also inquire as to what information about a counting
function can be ascertained from the fact that a reciprocal sum converges. This is addressed in the following
proposition, which in particular clarifies why Conjecture 1 is a true strengthening of Szemerédi’s Theorem.

Proposition 7. If A ⊆ N and
∑
n∈A 1/n <∞, then CA(x)/x→ 0.

Proof. We approach the claim contrapositively, fixing A ⊆ N such that CA(x)/x 6→ 0. In other words, there
exists δ > 0 such that CA(n) ≥ δn for infinitely many n ∈ N. Let n0 = 0, and choose a sequence {nk}k∈N of
natural numbers such that nk ≥ 2nk−1/δ and CA(nk) ≥ δnk for all k ∈ N.

Then, ∑
n∈A

1

n
=

∞∑
k=1

∑
n∈A∩(nk−1,nk]

1

n
≥
∞∑
k=1

CA(nk)− nk−1
nk

≥
∞∑
k=1

δnk − δnk/2
nk

=

∞∑
k=1

δ

2
→∞. �

To complete the results promised in (iii) and conclude our discussion, we show that Proposition 7 is essentially
sharp, in that no stronger global information on a counting function is available strictly from the fact that
the reciprocal sum is convergent, or even very small.

Proposition 8. Suppose f : [1,∞) → [0, 1] with f(x) → 0. For every ε > 0, there exists A ⊆ N such that
CA(n) ≥ f(n)n for infinitely many n ∈ N and

∑
n∈A 1/n < ε.

Proof. Fix 0 < ε < 1 and f : [1,∞) → [0, 1] satisfying f(x) → 0 as x → ∞. Choose an increasing sequence
{nk}∞k=1 of natural numbers satisfying nk, f(nk)−1 ≥ 2k+2/ε for all k ∈ N. Let Ak = N∩ ((1− f(nk))nk, nk],
and let A =

⋃∞
k=1Ak. For every k ∈ N we have CA(nk) ≥ |Ak| ≥ f(nk)nk, and further∑

n∈A

1

n
≤
∞∑
k=1

∑
n∈Ak

1

n
≤
∞∑
k=1

|Ak|
min(Ak)

≤
∞∑
k=1

f(nk)nk + 1

(1− f(nk))nk
<

∞∑
k=1

2(f(nk)nk + 1)

nk
≤
∞∑
k=1

ε

2k
= ε. �
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A particular consequence of Proposition 8 is the fact that two sets of natural numbers can have nearly
identical reciprocal sum functions, up to a tiny fixed error, but have counting functions that behave very
differently. For example, let P be the set of primes, let A be the set yielded by Proposition 8 with ε = .00001
and f(x) = 1/ log log log x, and let B = P ∪ A. We can certainly say that SB(x) is well-approximated by
log log x, just as SP (x) is, but in fact the relationship is even stronger, as SB(x) is almost exactly the same
as SP (x), with |SB(x) − SP (x)| < .00001 for all x. However, while P consistently contains around n/ log n
of the first n natural numbers, B contains at least n/ log log log n of the first n natural numbers infinitely
often, a dramatic difference in density.

Acknowledgements: Proposition 7 was inspired by Chapter 10 of [4], and also appears as an exercise in
Chapter 3 of [12]. In the special case where S(x) = log log x − C, exercises in Chapter 3 of [10] are similar
to Propositions 4 and 5.
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