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Abstract. For integers k, r ≥ 2, the diagonal Ramsey number Rr(k) is the minimum N ∈ N such that every

r-coloring of the edges of a complete graph on N vertices yields on a monochromatic subgraph on k vertices.
Here we make a careful effort of extracting explicit upper bounds for Rr(k) from the pigeonhole principle

alone. Our main term improves on previously documented explicit bounds for r ≥ 3, and we also consider an

often ignored secondary term, which allows us to subtract a uniformly bounded below positive proportion of

the main term. Asymptotically, we give a self-contained proof that Rr(k) ≤
(
3+e
2

) (r(k−2))!
((k−2)!)r

(1 + or→∞(1)),

and we conclude by noting that our methods combine with previous estimates on Rr(3) to improve the

constant 3+e
2

to 3+e
2
− d

48
, where d = 66 − R4(3) ≥ 4. We also compare our formulas, and previously

documented formulas, to some collected numerical data.

1. Introduction

The classic party problem poses the following question: how many people must be at a party in order to
guarantee that there is either a group of three mutual acquaintances, or a group of three mutual strangers?
A slightly impractical assumption here is that any two people are either acquainted or not, with no ambi-
guity. This question can be modeled with graphs, with each party guest represented by a vertex, and edges
connecting each pair of guests colored red or blue according to their acquaintance status. With this framing,
the desired occurrence is nicely characterized as a triangle formed by edges of all the same color, which we
refer to as monochromatic. Such an occurrence is not guaranteed amongst five partygoers. Consider the
five vertices of a regular pentagon, with edges between consecutive vertices colored blue, and edges between
nonconsecutive vertices colored red. Every triangle contains at least one red edge and at least one blue edge.
However, with six people, trial and error suggests that such pattern avoidance is impossible. Indeed this is
the case, and the standard argument is as follows.

Consider a party with six people, and consider one particular guest; call them Jordan. Jordan can divide
the remaining five people into two groups: those they know, and those they do not. The larger of these groups
must have at least three people. This is an application of the pigeonhole principle, with the alternative being
that each group has at most two people, in which case the total number of non-Jordan partygoers is at most
four. Whichever group has at least three people, let that be the blue acquaintance status, and let its opposite
be red. We now have the Jordan vertex connected to three other vertices with blue edges. If there is a blue
edge between a pair of these three vertices, then that pair forms a blue triangle with Jordan. Otherwise,
the three vertices form a red triangle amongst themselves. In particular, a monochromatic triangle exists no
matter what, which completes the proof.

This problem generalizes very naturally. Why just a group of three? Why just two colors? Indeed, the
classic party problem is the first nontrivial case of the following general result due to Ramsey [8], which
launched a robust area of combinatorial research. Recall that a complete graph is one in which every pair of
vertices is connected with an edge, and for r ∈ N we refer to a partition of the edges of a complete graph
into r pairwise disjoint sets (which we think of as r different colors) as an r-coloring.

Theorem 1.1 (Ramsey’s Theorem). For r, k ∈ N, there exists N ∈ N such that every r-coloring of the edges
of a complete graph on N vertices yields a monochromatic complete subgraph on k vertices.

As stated, Theorem 1.1 is purely qualitative. However, the existence of N ∈ N that satisfies the conclusion
implies the existence of a first N ∈ N that satisfies the conclusion, in other words a “breaking point” at
which the desired pattern switches from non-guaranteed to guaranteed.
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The following definition captures this breaking point, allowing for an arbitrary number of colors, and also
allowing for different desired pattern sizes in each color.

Definition 1.2. For r, k1, . . . , kr ∈ N, we define the Ramsey number Rr(k1, . . . , kr) to be the minimum
N ∈ N such that every r-coloring of the edges of a complete graph on N vertices yields a monochromatic
complete subgraph on ki vertices in color i for some 1 ≤ i ≤ r. For r, k ∈ N, we define the diagonal Ramsey
number Rr(k) = Rr(k, . . . , k).

Armed with this notation, the solution to the original party problem can be summarized as R2(3) = 6.
In this paper, we attempt a thorough, self-contained investigation of the extent to which explicit upper
bounds on Ramsey numbers can be extracted from the pigeonhole principle; in other words an appropriate
adaptation of the argument outlined in the opening paragraphs. For an appetizer of sorts, a special case of
our results is as follows, in which o(1) denotes an unspecified function tending to 0 as r →∞.

Theorem 1.3. For an integer r ≥ 2,

Rr(4) ≤ (2r)!

2r

(
10

3
− 2(r − 2)

(2r − 1)(2r − 3)

)
,

and asymptotically

Rr(4) ≤ (2r)!

2r

(
3 + e

2

)
(1 + o(1)).

For those interested in skipping ahead, the first component of Theorem 1.3 follows from Proposition 3.2,
Theorem 3.3, and Theorem 3.7, while the asymptotic upper bound is a special case of Corollary 3.9.

In Section 2, we establish the appropriate basics for the application of the pigeonhole principle to multicolor
Ramsey numbers, and in the process we briefly survey some classical results. In Section 3, we introduce a
decomposition of our efforts into a main term, Mr, and a waste function, wr, the latter so named because
it captures a beneficial component of the recursive upper bound yielded by the pigeonhole principle that is
ignored in some previous explicit bounds. The decomposition takes the form Rr ≤Mr−wr, so our attention
is turned to upper bounds on Mr and lower bounds for wr, and our main results of this type are stated in
this section. Section 4 is dedicated to the verification of our claims for Mr, while Section 5 focuses on wr.
We take a computational angle on our efforts in Section 6, and conclude in Section 7 with a discussion of
how our results are compatible with more refined known estimates on Rr(3).

2. Preliminaries and classical bounds

We begin this section with our most elementary and most central ingredient: a version of the pigeonhole
principle in which a collection of elements are distributed into several boxes, with potentially different quotas
for each box. This should be thought of as a generalized justification of the fact that when Jordan divided five
people into two groups, the larger of the two groups had to have at least three people. Here and throughout
the paper, we use |X| to denote the number of elements in a finite set X.

Proposition 2.1 (Asymmetric pigeonhole principle). Suppose n, r,m1, . . . ,mr ∈ N, and suppose A1, . . . , Ar
are sets with |A1 ∪ · · · ∪Ar| = n. If n > m1 + · · ·+mr − r, then |Ai| ≥ mi for some 1 ≤ i ≤ r.

Proof. Suppose n, r,m1, . . . ,mr ∈ N, and suppose A1, . . . , Ar are sets with |A1 ∪ · · · ∪ Ar| = n. Proceeding
contrapositively, suppose that |Ai| < mi for all 1 ≤ i ≤ r. Since mi is an integer, |Ai| < mi implies
|Ai| ≤ mi − 1 for all 1 ≤ i ≤ r. Therefore,

n = |A1 ∪ · · · ∪Ar| ≤ |A1|+ · · ·+ |Ar| ≤ (m1 − 1) + · · ·+ (mr − 1) = m1 + · · ·+mr − r,
and the contrapositive is established. �

We now apply Proposition 2.1 to obtain a recursive upper bound on multicolor Ramsey numbers, which
appears implicitly in a paper of Greenwood and Gleason [6] and appears as Proposition 2.18 in [5]. This is
a generalization of the process in which Jordan divided their fellow partygoers into two groups, and then we
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focusd on the larger group. The final case analysis in the proof below is analogous to the case analysis we
conducted on the three vertices connected to Jordan with blue edges. We use Kn to denote the complete
graph on n vertices.

Proposition 2.2. For integers r, k1, . . . , kr ≥ 2,

Rr(k1, . . . , kr) ≤ Rr(k1 − 1, k2, . . . , kr) + · · ·+Rr(k1, k2, . . . , kr − 1)− (r − 2).

Proof. Fix integers r, k1, . . . , kr ≥ 2 and let mi = Rr(k1, . . . , ki − 1, . . . , kr) for each 1 ≤ i ≤ r. Let
N = m1 + · · ·+mr − (r− 2). To prove that Rr(k1, . . . , kr) ≤ N , we must show that every r-coloring of KN

yields a monochromatic Kki subgraph in color i for some 1 ≤ i ≤ r. To this end, fix an r-coloring of KN , fix
a particular vertex v, and group the remaining N − 1 vertices into sets A1, . . . , Ar based on the color of the
edge connecting them with v. Since N − 1 > m1 + · · · + mr − r, Proposition 2.1 yields that |Ai| ≥ mi for
some 1 ≤ i ≤ r. In particular, amongst the vertices in Ai, there is either a monochromatic Kki−1 subgraph
in color i, or there is a monochromatic Kkj subgraph in color j for some j 6= i. In the latter case, we are
done. In the former case, because the edges connecting v to the vertices of Ai are all color i, the set of
vertices Ai ∪ {v} determines a monochromatic Kki subgraph in color i, which completes the proof. �

In the case r = 2, Proposition 2.2 yields an inequality that is reminiscent of the Pascal’s triangle relation
obeyed by binomial coefficients. This observation can be made precise with the following explicit upper
bound on classical Ramsey numbers, first established by Erdős and Szekeres [3].

Proposition 2.3. For k1, k2 ∈ N,

R2(k1, k2) ≤
(
k1 + k2 − 2

k1 − 1

)
.

Proof. We induct on k1 + k2. We first note that for k1 = k2 = 1, R2(1, 1) = 1 as any single vertex trivially
constitutes a monochromatic K1 subgraph in every color. On the right hand side, we have

(
1+1−2
1−1

)
=
(
0
0

)
= 1,

and the base case is established.

Now suppose the conclusion holds for all k1, k2 ∈ N summing to a particular s ≥ 2, and fix k1, k2 ∈ N
with k1 + k2 = s + 1. By Proposition 2.2, we have R2(k1, k2) ≤ R2(k1 − 1, k2) + R2(k1, k2 − 1), and since
(k1 − 1) + k2 = k1 + (k2 − 1) = s, we can invoke the inductive hypothesis for each term on the right hand
side. Pairing this with the usual Pascal’s triangle relation

(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
, we have

R2(k1, k2) ≤ R2(k1 − 1, k2) +R2(k1, k2 − 1)

≤
(

(k1 − 1) + k2 − 2

(k1 − 1)− 1

)
+

(
k1 + (k2 − 1)− 2

k1 − 1

)
=

(
k1 + k2 − 2

k1 − 1

)
,

as required. �

In order to generalize Proposition 2.3 to more than two colors, it is natural to consider whether Proposition
2.2 can be used in conjunction with a Pascal’s triangle-like relation on multinomial coefficients, which leads
us toward the following definition and proposition.

Definition 2.4. For n, r ∈ N and integers k1, . . . , kr ≥ 0 with k1 + · · ·+ kr = n, we define the multinomial
coefficient

(
n

k1,...,kr

)
to be the number of (ordered) partitions of an n-element set A into A1 ∪ · · · ∪ Ar with

|Ai| = ki for all 1 ≤ i ≤ r. Equivalently,
(

n
k1,...,kr

)
is the coefficient on xk11 · · ·xkrr in the expansion of

(x1 + · · ·+ xr)
n.

We include proofs of the following standard formula and recurrence relation for completeness.

Proposition 2.5. For n, r ∈ N and integers k1, . . . , kr ≥ 0 with k1 + · · ·+ kr = n,(
n

k1, . . . , kr

)
=

n!

k1! · · · kr!
.
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Further, if k1, . . . , kr > 0, then(
n

k1, . . . , kr

)
=

(
n− 1

k1 − 1, k2, . . . , kr

)
+ · · ·+

(
n− 1

k1, k2 . . . , kr − 1

)
.

Proof. Fix n, r ∈ N and integers k1, . . . , kr ≥ 0 with k1+ · · ·+kr = n. Let A be any set with |A| = n. For the
first formula, we begin by noting that the total number of orderings of the form A = {a1, a2, . . . , an} is n!.
Further, every such ordering defines a partition of A into A = A1 ∪ · · · ∪Ar with |Ai| = ki for all 1 ≤ i ≤ r
by letting A1 = {a1, . . . , ak1}, A2 = {ak1+1, . . . , ak1+k2}, . . . , Ar = {ak1+···+kr−1+1, . . . , an}. However, while
the multinomial coefficient accounts for the ordering of the sets A1, . . . , Ar, each individual partition does
not care about the order in which the elements of the sets A1, . . . , Ar are listed. In particular, an individual
partition A = A1 ∪ · · · ∪Ar is counted once for every possible choice of the ordering of the elements of each
set, a total of k1!k2! · · · kr! times. Therefore,

(
n

k1,...,kr

)
= n!

k1!···kr! , as claimed.

For the recursive relation, a generalized form of the usual Pascal’s triangle relation, we argue both combina-
torially and algebraically. Fix a particular x ∈ A. Consider a partition A = A1 ∪ · · · ∪Ar with |Ai| = ki for
all 1 ≤ i ≤ r. If x is assigned to Ai, the remaining n − 1 elements must be distributed among A1, . . . , Ar,
with exactly ki − 1 elements in Ai and exactly kj elements in Aj for all j 6= i. In other words, the number

of qualifying partitions with x ∈ Ai is precisely the multinomial coefficient
(

n−1
k1,...,ki−1,...,kr

)
. Since x must be

assigned to Ai for some 1 ≤ i ≤ r, we have(
n

k1, . . . , kr

)
=

r∑
i=1

(
n− 1

k1, . . . , ki − 1, . . . , kr

)
,

as claimed. Alternatively, we can use the previously established formula to observe(
n− 1

k1 − 1, k2, . . . , kr

)
+ · · ·+

(
n− 1

k1, k2, . . . , kr − 1

)
=

(n− 1)!

(k1 − 1)!k2! · · · kr!
+ · · ·+ (n− 1)!

k1!k2! · · · (kr − 1)!

=
k1(n− 1)!

k1! · · · kr!
+ · · ·+ kr(n− 1)!

k1! · · · kr!

=
(k1 + · · ·+ kr)(n− 1)!

k1! · · · kr!

=
n(n− 1)!

k1! · · · kr!
=

n!

k1! · · · kr!
=

(
n

k1, . . . , kr

)
. �

A natural candidate for a generalization of Proposition 2.3 using Proposition 2.5 is the bound

(1) Rr(k1, . . . , kr) ≤
(
k1 + · · ·+ kr − r
k1 − 1, . . . , kr − 1

)
.

Indeed (1) holds, as seen by a straightforward adaptation of the induction proof of Proposition 2.3 above,
and it appears in numerous sources in the literature, including Corollary 3 of [6]. However, for r ≥ 3, (1)
does a surprisingly poor job of capturing upper bounds on Ramsey numbers available from Proposition 2.2,
as we will explore with examples later. One explanation of this phenomenon is the fact that, for r ≥ 3, the
right side of (1) lacks a fundamental property that the left side possesses. Namely, Ramsey numbers “ignore
2’s”, by which we mean the following.

Proposition 2.6. For integers r, k1, . . . , kr−1 ≥ 2

Rr(k1, . . . , kr−1, 2) = Rr−1(k1, . . . , kr−1).

Proof. Suppose r, k1, . . . , kr−1 ≥ 2 are integers. Let N = Rr−1(k1, . . . , kr−1). An (r − 1)-coloring of KN−1
with no Kki subgraph in color i for all 1 ≤ i ≤ r−1 also counts as a valid r-coloring of KN−1 that simply does
not use color r, so in particular there are no K2 subgraphs in color r. Therefore, Rr(k1, . . . , kr−1, 2) ≥ N .
Conversely, for any r-coloring of KN , since a K2 subgraph consists of a single edge, the only way to avoid a
K2 subgraph in color r is to not use color r at all. In this case, we in fact have an (r − 1)-coloring of KN ,
which must yield a Kki subgraph in color i for some 1 ≤ i ≤ r − 1. Therefore, Rr(k1, . . . , kr−1, 2) ≤ N ,
which completes the proof. �
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To begin to illustrate our assertion that (1) does not fully capture the capability of the pigeonhole principle
in bounding multicolor Ramsey numbers, we consider the following example.

Example 2.7. R3(4) ≤ 272.

Repeatedly applying Propositions 2.2, 2.6, and 2.3, and the fact that Ramsey numbers are invariant under
coordinate permutation, we see

R3(4) = R3(4, 4, 4)

≤ 3R3(4, 4, 3)− 1

≤ 6R3(4, 3, 3) + 3R2(4, 4)− 4

≤ 6R3(3, 3, 3) + 12R2(4, 3) + 3R2(4, 4)− 10

≤ 18R3(3, 3) + 12R2(4, 3) + 3R2(4, 4)− 16

≤ 18(6) + 12(10) + 3(20)− 16

= 272.

Remark. In fact it is known that R2(4, 3) = 9, not 10 as implied by R2(4, 3) ≤ R2(3, 3) + R2(4, 2), due to
the fact that the total degree of a graph must be an even number. This consideration generalizes to show
that, when r = 2, the inequality in Proposition 2.3 is strict if both Ramsey numbers on the right hand side
are even, another result that dates back to [6], as is the case with R2(4, 2) = 4 and R2(3, 3) = 6. This fact,
and any other mitigating considerations, can be used when applying Proposition 2.2 to yield improved upper
bounds, in this case R3(4) ≤ 260. However, in this paper we focus our attention on capturing the strength
of the pigeonhole principle alone.

In contrast with Example 2.7, plugging in r = 3 and k1 = k2 = k3 = 4 to (1) yields R3(4) ≤ 9!
3!3 = 1680.

The spirit of this observation is not new, for example Graham and Rödl [5] remark that (1) “can easily
be improved by a factor that tends to 0 as r → ∞.” However, documented examples of this have been
difficult to locate in the literature. One example, which helps alleviate the discrepancy between how Ramsey
numbers and (1) handle inputs equal to 2, appears in an unpublished note of Teräväinen [10]. In that note,
Proposition 2.3 is used as a base case for an induction on r, and then Proposition 2.6 is implicitly used to
establish

(2) Rr(k1, . . . , kr) ≤
(

k1 + · · ·+ kr − 2r + 2

k1 − 1, k2 − 1, k3 − 2, . . . , kr − 2

)
for r, k1, . . . , kr ≥ 2. To again compare with Example 2.7, plugging in r = 3 and k1 = k2 = k3 = 4 into
(2) yields R3(4) ≤ 560. In the diagonal case, (2) is asymptotically smaller than (1) by a factor of at least
(r/e)r−2 as r →∞. One of our main results, Theorem 3.3, can be thought of as achieving the same goal as
(2), the establishment of a multinomial coefficient upper bound that respects Proposition 2.6, but in a more
efficient way.

In addition to its lack of exploitation of Proposition 2.6, another potential weakness of (1), which is shared
by (2), is that it fails to take any advantage of the r − 2 term in Proposition 2.2, which works in our favor
for r ≥ 3. An example of this term in action is the following, which is essentially Theorem 2.20 in [5]. Here
and for the remainder of the paper we use er =

∑r
n=0 1/n! to denote the r-th partial sum in the Taylor

expansion of e.

Proposition 2.8. For r ∈ N, Rr(3) ≤ err! + 1.

Proof. We induct on r. For r = 1, R1(3) is the number of vertices required to guarantee a monochromatic
triangle in any 1-coloring, which is 3. For the right hand side, we have e1(1!) + 1 = (1 + 1)(1) + 1 = 3, so
the base case is established.
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Now assume the conclusion holds for some particular r ∈ N. By Proposition 2.2, the invariance of Ramsey
numbers under coordinate permutation, and Proposition 2.6, we have

Rr+1(3) ≤ Rr+1(2, 3, . . . , 3) + · · ·+Rr+1(3, . . . , 3, 2)− (r + 1− 2)

= (r + 1)Rr+1(3, . . . , 3, 2)− (r − 1)

= (r + 1)Rr(3)− (r − 1)

≤ (r + 1)(err! + 1)− (r − 1)

= er(r + 1)! + 1 + 1

=

(
er +

1

(r + 1)!

)
(r + 1)! + 1

= er+1(r + 1)! + 1,

and the induction is complete. �

It is important to note that in our brief survey here, we have focused on only the most elementary tools,
and have covered only a tiny portion of the techniques and extensive literature that have developed on
Ramsey numbers over the past near century. For an impressively comprehensive treatment, the interested
reader is encouraged to browse the referenced survey of Radziszowski [7], updated most recently in January
2021. Some notable examples include improved bounds on diagonal two-color Ramsey numbers by Conlon

[1] and Sah [9], the latter of whom showed R2(k) ≤
(
2k−2
k−1

)
e−c(log k)

2

for a constant c > 0, upper bounds on

Rr(3) due to Xu-Xie-Chen [11] and Eliahou [2] that we discuss in Section 7, as well as a great deal of work
on lower bounds, modifications for incomplete graphs, hypergraphs, and more.

3. Main Results

As indicated in the introduction, we divide the task of efficiently capturing the strength of Proposition
2.2 into an explicit upper bound on multicolor Ramsey numbers into two components: a main term, Mr,
which accounts for the Ramsey number summands on the right hand side of the inequality in Proposition
2.2, and a waste function, wr, which accounts only for the subtracted (r − 2) term.

Definition 3.1. We recursively define functions Mr, wr : Zr≥2 → Z≥0 for integers r ≥ 2 as follows:

(i) M2(k1, k2) =
(
k1+k2−2
k1−1

)
and w2(k1, k2) = 0 for all k1, k2 ≥ 2

(ii) Both Mr and wr “ignore 2’s”, meaning

Mr+1(2, k1, . . . , kr) = Mr+1(k1, 2, k2, . . . , kr) = · · · = Mr+1(k1, . . . , kr, 2) = Mr(k1, . . . , kr)

and

wr+1(2, k1, . . . , kr) = wr+1(k1, 2, k2, . . . , kr) = · · · = wr+1(k1, . . . , kr, 2) = wr(k1, . . . , kr)

for all k1, . . . , kr ≥ 2

(iii) If k1, . . . , kr ≥ 3, then

Mr(k1, . . . , kr) = Mr(k1 − 1, . . . , kr) + · · ·+Mr(k1, . . . , kr − 1).

and
wr(k1, . . . , kr) = wr(k1 − 1, . . . , kr) + · · ·+ wr(k1, . . . , kr − 1) + (r − 2).

In Proposition 3.2, we prove via double induction on r and k1 + · · ·+ kr that Mr and wr are uniquely
determined by properties (i)-(iii), and also we have:

(iv) Mr and wr are invariant under coordinate permutation, just like Ramsey numbers.

Also, for a single integer k ≥ 2, we define Mr(k) = Mr(k, . . . , k) and wr(k) = wr(k, . . . , k).
6



Before getting into the weeds with these two components, we first establish that upper bounds for multi-
color Ramsey numbers are implied by upper bounds for Mr and lower bounds for wr.

Proposition 3.2. The functions Mr, wr : Zr≥2 → Z≥0 for integers r ≥ 2 are uniquely determined by

properties (i)-(iii) in Definition 3.1, and are invariant under coordinate permutation. Further, for integers
r, k1, . . . , kr ≥ 2,

Rr(k1, . . . , kr) ≤Mr(k1, . . . , kr)− wr(k1, . . . , kr).

Proof. We prove all three claims with a double induction, an “outer induction” on the number of colors, r,
and an “inner induction” on k1 + · · ·+ kr.

For the outer base case r = 2, we have that M2(k1, k2) =
(
k1+k2−2
k1−1

)
and w2(k1, k2) = 0 are uniquely

determined and invariant under coordinate permutation. Further, the inequality

R2(k1, k2) ≤M2(k1, k2)− w2(k1, k2) =

(
k1 + k2 − 2

k1 − 1

)
is precisely Proposition 2.3, and the outer base case is fully established.

Now suppose all three claims hold for a particular r ≥ 2 and all k1, . . . , kr ≥ 2. We now verify that all
three claims hold for r+ 1 and all k1, . . . , kr+1 ≥ 2 by induction on k1 + · · ·+ kr+1. By Proposition 2.6 and
property (ii) of Definition 3.1, we know that all three claims hold for all k1, . . . , kr+1 if min{k1, . . . , kr+1} = 2,
as this reduces back to the case of r coordinates. In particular, this establishes the inner base case of
k1 = · · · = kr+1 = 2, and allows us to assume moving forward that k1, . . . , kr+1 ≥ 3. We now assume all
three claims hold for all k1, . . . , kr+1 ≥ 2 adding to a particular s ≥ 2(r + 1), and we fix k1, . . . , kr+1 ≥ 3
with k1 + · · ·+ kr+1 = s+ 1.

By property (iii), Mr+1(k1, . . . , kr+1) and wr+1(k1, . . . , kr+1) are given by sums of values of Mr+1 and wr+1,
respectively, with coordinates adding to s (plus a constant in the case of wr+1). Since each of these are
uniquely determined by inductive hypothesis, so are Mr+1(k1, . . . , kr+1) and wr+1(k1, . . . , kr+1). Further,
for any permutation φ : {1, . . . , r + 1} → {1, . . . , r + 1}, we have

Mr+1(kφ(1), . . . , kφ(r+1)) = Mr+1(kφ(1) − 1, . . . , kφ(r+1)) + · · ·+Mr+1(kφ(1), . . . , kφ(r+1) − 1)

= Mr+1(k1, . . . , kφ(1) − 1, . . . , kr+1) + · · ·+Mr+1(k1, . . . , kφ(r+1) − 1, . . . , kr+1)

= Mr+1(k1 − 1, . . . , kr) + · · ·+Mr+1(k1, . . . , kr+1 − 1)

= Mr+1(k1, . . . , kr+1),

where the coordinates are permuted in the second line to put the indices in order, as allowed by inductive
hypothesis, and the summands in the third line are rearranged to match property (iii). The reasoning for
wr+1 is identical.

Finally, by Proposition 2.2, property (iii), and inductive hypothesis, we have

Rr+1(k1, . . . , kr+1) ≤Rr(k1 − 1, . . . , kr) + · · ·+Rr(k1, . . . , kr − 1)− (r − 2)

≤Mr(k1 − 1, . . . , kr)− wr(k1 − 1, . . . , kr) + · · ·
+Mr(k1, . . . , kr − 1)− wr(k1, . . . , kr − 1)− (r − 2)

=(Mr(k1 − 1, . . . , kr) + · · ·+Mr(k1, . . . , kr − 1))

− (wr(k1 − 1, . . . , kr) + · · ·+ wr(k1, . . . , kr − 1) + (r − 2))

=Mr+1(k1, . . . , kr)− wr(k1, . . . , kr),

and all three claims are established. �

As mentioned in Section 2, our first effort in wrestling with Mr, proven with the same double induction
structure as Proposition 3.2, is similar in spirit to (2). The improvements in comparison to (2) are gained
from a more careful inner induction step.
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Theorem 3.3. For integers r ≥ 2 and k1 ≥ k2 ≥ · · · ≥ kr ≥ 2,

(3) Mr(k1, . . . , kr) ≤
(k1 + k2 − 2)(k1 + k2 − 3)

(k1 − 1)(k2 − 1)

(
k1 + · · ·+ kr − 2r

k1 − 2, . . . , kr − 2

)
.

In particular, for integers r, k ≥ 2,

(4) Mr(k) ≤
(

4− 2

(k − 1)

)
(r(k − 2))!

((k − 2)!)
r .

The right hand side of (4) is smaller than the diagonal case of (2) by at least a factor of r2(k−2)2
2(2k−3)(k−1) .

Returning to Example 2.7, and the bounds R3(4) ≤ 1680 and R3(4) ≤ 560 yielded by (1) and (2), respectively,
plugging in r = 3 and k = 4 into (4) yields R3(4) ≤ M3(4) ≤ 300. Further inspection of Example 2.7 with
our new bifurcated perspective yields the exact value M3(4) = 288, while w3(4) = 16, so the estimate
M3(4) ≤ 300 is relatively efficient.

Further, if in Example 2.7 we were to continue applying Proposition 2.2 even after reducing to 2 coordi-
nates, we would eventually be left with 18 = (3)(2)(3) copies of R2(4, 2) = 4 and 72 = (3)(2)(12) copies of
R2(3, 2) = 3, which yields M3(4) = (18)(4) + (72)(3) = 288. The (3)(2) represents the number of ordered
choices of two coordinates, and the final factors of 3 and 12, respectively, arise as the number of paths,
reducing a coordinate by 1 each step, from (4, 4, 4) to (4, 3, 2) and (3, 3, 2), respectively. At the expense
of the compact, convenient formula provided by Theorem 3.3, this observation generalizes to the following
exact formula for Mr.

Theorem 3.4. For integers r ≥ 2 and k1, . . . , kr ≥ 3,

Mr(k1, . . . , kr) =

r∑
i=1

r∑
j=1
j 6=i

kj∑
m=3

m

(
k1 + · · ·+ kr − 2r −m+ 1

k1 − 2, . . . , ki − 3, . . . , kj −m, . . . , kr − 2

)
.

In particular, for integers r ≥ 2 and k ≥ 3,

Mr(k) = r(r − 1)

k∑
m=3

m

(
r(k − 2)−m+ 1

k − 2, . . . , k − 2︸ ︷︷ ︸
r−2

, k − 3, k −m

)

Theorem 3.4, or a separate double induction proof, gives the following lower bound on Mr, which in particular
assures that the convenient formula in Theorem 3.3 is within a factor of 4/3 of the true value of Mr in the
diagonal case.

Corollary 3.5. For integers r ≥ 2 and k1, . . . , kr ≥ 3,

Mr(k1, . . . , kr) ≥ 3

(
k1 + · · ·+ kr − 2r

k1 − 2, . . . , kr − 2

)
.

Combining Corollary 3.5 with an asymptotic upper bound on Mr yielded by Theorem 3.4, we establish
the following asymptotic formula for Mr(k). We use the notation or→∞(1) to clarify that the asymptotic
estimate is in the variable r, not k.

Corollary 3.6. For integers r ≥ 2 and k ≥ 3,

Mr(k) = 3
(r(k − 2))!

((k − 2)!)
r (1 + or→∞(1)).

Implicit in the proof of Proposition 2.8 (which, as noted, is not new) is the formula wr(3) = (3−er)r!−1,
the difference between the formula in the conclusion of Proposition 2.8 and the main term 3r! yielded by (4)
when k = 3. We include a separate proof of this formula for wr(3) in Section 5 for completeness, and then
establish the following general lower bound in the diagonal case.
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Theorem 3.7. For integers r ≥ 2 and k ≥ 4,

wr(k) ≥ (r − 2)r!

(
(er − 1)

r!k−3 − 1

r!− 1
− r!k−4

)
+

r−3∑
j=0

(
r

j

)(
r(k − 3) + j − 1

k − 2, . . . , k − 2︸ ︷︷ ︸
j

, k − 3, . . . , k − 3, k − 4︸ ︷︷ ︸
r−j

)
(r − j) [r − j − 2 + wr−j(3)] .

The first upper bound in Theorem 1.3 from the introduction now follows from Theorem 3.3 and the extraction
of the j = 0 term from the summation in Theorem 3.7. Careful manipulation of the lower bound formula
in Theorem 3.7, and a healthy dose of calculus, gives the following asymptotic lower bound on wr(k), which
notably has the same order of magnitude as Mr(k).

Theorem 3.8. For integers r ≥ 2 and k ≥ 4,

wr(k) ≥
(

3− e
2

)
(r(k − 2))!

((k − 2)!)
r (1− or→∞(1)) .

Finally, Theorems 3.6 and 3.8 combine with Proposition 3.2 to yield the following asymptotic upper bound
for diagonal multicolor Ramsey numbers.

Corollary 3.9. For integers r ≥ 2 and k ≥ 4,

Rr(k) ≤
(

3 + e

2

)
(r(k − 2))!

((k − 2)!)
r (1 + or→∞(1)) .

We have asserted throughout the paper that we seek explicit upper bounds on multicolor Ramsey numbers
that capture the strength of the pigeonhole principle “alone”. However, as will be seen in the following two
sections, some of our proofs use other tools, primarily calculus. To clarify our meaning, we note that, besides
the basic properties R1(k) = k, Proposition 2.6, and invariance under coordinate permutation, the recursive
inequality in Proposition 2.2 is the only thing we are using about Ramsey numbers. Our efforts in Section 4
and 5 address the question of what explicit upper bounds must hold for any function satisfying that list of
properties, and toward that end we incorporate a wider variety of techniques.

4. The main term

In this section we verify all of our claims concerning Mr, namely Theorems 3.3 and 3.4 and Corollaries 3.5
and 3.6. We begin with some preliminary observations related to the fraction multiplied by the multinomial
coefficient in the conclusion of Theorem 3.3, which will be crucial in the proof of that theorem.

Lemma 4.1. For x, y > 0, let f(x, y) = (x+y)(x+y−1)
xy . Then, for x, y > 1, f(x− 1, y) ≤ f(x, y) if and only

if x ≥ y. Further, for integers r, n1, n2 ≥ 2 and n3, . . . , nr ≥ 0,

f(n1 − 1, n2)

(
n1 + · · ·+ nr − 3

n1 − 2, n2 − 1, n3 . . . , nr

)
+ f(n1, n2 − 1)

(
n1 + · · ·+ nr − 3

n1 − 1, n2 − 2, n3, . . . , nr

)
=f(n1, n2)

((
n1 + · · ·+ nr − 3

n1 − 2, n2 − 1, n3 . . . , nr

)
+

(
n1 + · · ·+ nr − 3

n1 − 1, n2 − 2, n3, . . . , nr

))
.

Proof. For the first claim, we consider x, y > 1 and see

f(x− 1, y) ≤ f(x, y)⇐⇒ (x+ y − 1)(x+ y − 2)

(x− 1)y
≤ (x+ y)(x+ y − 1)

xy

⇐⇒ x(x+ y − 2) ≤ (x− 1)(x+ y)

⇐⇒ x2 + xy − 2x ≤ x2 + xy − x− y
⇐⇒ x ≥ y.
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For the second claim, fix integers r, n1, . . . , nr ≥ 2. We first apply the formula from Proposition 2.5, and the
two sides of the desired equality are

f(n1 − 1, n2)
(n1 + · · ·+ nr − 3)!

(n1 − 2)!(n2 − 1)!n3! · · ·nr!
+ f(n1, n2 − 1)

(n1 + · · ·+ nr − 3)!

(n1 − 1)!(n2 − 2)!n3! · · ·nr!
and

f(n1, n2)

(
(n1 + · · ·+ nr − 3)!

(n1 − 2)!(n2 − 1)!n3! · · ·nr!
+

(n1 + · · ·+ nr − 3)!

(n1 − 1)!(n2 − 2)!n3! · · ·nr!
,

)
respectively. Dividing both expressions by the common factor

(n1 + · · ·+ nr − 3)!

(n1 − 2)!(n2 − 2)!n3! · · ·nr!
,

we have that the desired inequality holds if and only if

f(n1 − 1, n2)

n2 − 1
+
f(n1, n2 − 1)

n1 − 1
= f(n1, n2)

(
1

n2 − 1
+

1

n1 − 1

)
,

or in other words

(n1 + n2 − 1)(n1 + n2 − 2)

(n1 − 1)n2(n2 − 1)
+

(n1 + n2 − 1)(n1 + n2 − 2)

n1(n2 − 1)(n1 − 1)
=

(n1 + n2)(n1 + n2 − 1)

n1n2

(
1

n2 − 1
+

1

n1 − 1

)
.

Dividing both sides by (n1 + n2 − 1) and multiplying both sides by n1n2(n1 − 1)(n2 − 1), this equality is
equivalent to

(n1 + n2 − 2)n1 + (n1 + n2 − 2)n2 = (n1 + n2)(n1 − 1 + n2 − 1).

Finally, we see that both sides yield (n1 + n2)(n1 + n2 − 2), and the identity is verified. �

We now have the necessary facts to complete the double induction proof of our convenient, explicit upper
bound on multicolor Ramsey numbers.

Proof of Theorem 3.3. For integers r, k1, . . . , k2 ≥ 2, we let bk1,k2 = f(k1−1, k2−1), where f is as in Lemma

4.1, and we let Cr(k1, . . . , kr) =
(
k1+···+kr−2r
k1−2,...,kr−2

)
. With this notation, we must show that

(5) Mr(k1, . . . , kr) ≤ bk1,k2Cr(k1, . . . , kr)
for all integers r ≥ 2 and k1 ≥ k2 ≥ · · · ≥ kr ≥ 2. We note that, by definition of Cr and by Proposition
2.5, Cr satisfies the same properties as Mr listed in (ii)-(iv) in Definition 3.7, while bk1,k2 is invariant under
transposition of the first two coordinates but not the full list of r coordinates when r ≥ 3.

We establish (5) with a double induction structured identically to that of the proof of Proposition 3.2. For
the outer base case r = 2, we see for k1, k2 ≥ 2 that

bk1,k2C2(k1, k2) =
(k1 + k2 − 2)(k1 + k2 − 3)

(k1 − 1)(k2 − 1)

(
k1 + k2 − 4

k1 − 2, k2 − 2

)
=

(k1 + k2 − 2)(k1 + k2 − 3)

(k1 − 1)(k2 − 1)

(k1 + k2 − 4)!

(k1 − 2)!(k2 − 2)!

=
(k1 + k2 − 2)!

(k1 − 1)!(k2 − 1)!

=

(
k1 + k2 − 2

k1 − 1

)
= M2(k1, k2).

In fact, the fraction bk1,k2 was chosen specifically to arrange this identity, and the outer base case is estab-
lished. Now suppose (5) holds for a particular r ≥ 2 and all k1 ≥ k2 ≥ · · · ≥ kr ≥ 2. By property (ii), we
also know that (5) holds for k1 ≥ · · · ≥ kr ≥ kr+1 = 2, as this reduces back to the case of r coordinates.
In particular, this establishes the inner base case of k1 = · · · = kr+1 = 2, and allows us to assume moving
forward that kr+1 ≥ 3. We now assume (5) holds for all k1 ≥ · · · ≥ kr+1 ≥ 2 adding to a particular
s ≥ 2(r + 1), and we fix k1 ≥ · · · ≥ kr+1 ≥ 3 with k1 + · · ·+ kr+1 = s+ 1.
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We complete the inner induction step by analyzing three cases:

Case 1: k1 = k2.

Suppose k1 = k2 = k. If k3 is also k, when applying property (iii) and subtracting from the first two
coordinates, we technically must permute coordinates to put them back into decreasing order to apply the
inductive hypothesis, so the resulting first two coordinates may both be k or may be one k and one k − 1.
However, Lemma 4.1 comes to the rescue in this case, as it assures bk,k = bk−1,k, so bk,k is the correct
coefficient on every term. Therefore, regardless of whether k3 is equal to versus less than, k, we have by
property (iii) and the inductive hypothesis that

Mr+1(k, k, k3, . . . , kr+1) = Mr+1(k − 1, k, . . . , kr+1) + · · ·+Mr+1(k, k, . . . , kr+1 − 1)

≤ bk,k (Cr+1(k − 1, k, . . . , kr+1) + · · ·+ Cr+1(k, k, . . . , kr+1 − 1))

= bk,kCr+1(k, k, k3, . . . , kr+1).

Case 2: k1 > k2 = k3.

Suppose k1 > k2 = k3 = k. Lemma 4.1 assures that bk1−1,k < bk1,k, and when applying property (iii) and
subtracting from the second coordinate, the third coordinate must be moved to the second spot in order
to apply the inductive hypothesis, so the correct coefficient on the second term is bk1,k. In other words, by
property (iii) and inductive hypothesis, we have

Mr+1(k1, k, k, k4, . . . , kr+1) =Mr+1(k1 − 1, k, k, . . . , kr+1) +Mr+1(k1, k − 1, k . . . , kr+1) + · · ·
+Mr+1(k1, . . . , kr+1 − 1)

≤bk1−1,kCr+1(k1 − 1, k, . . . , kr+1)

+ bk1,k (Cr+1(k1, k − 1, k, . . . , kr+1) + · · ·+ Cr+1(k1, . . . , kr+1 − 1))

<bk1,k (Cr+1(k1 − 1, k, . . . , kr+1) + · · ·+ Cr+1(k1, . . . , kr+1 − 1))

=bk1,kCr+1(k1, k, k, k4, . . . , kr+1).

Case 3: k1 > k2 > k3.

Suppose k1 > k2 > k3. By the second conclusion of Lemma 4.1, we have

bk1−1,k2Cr(k1 − 1, k2, . . . , kr) + bk1,k2−1Cr(k1, k2 − 1, . . . , kr)

=bk1,k2 (Cr(k1 − 1, k2, . . . , kr) + Cr(k1, k2 − 1, . . . , kr)) ,

and hence, applying property (iii) and the inductive hypothesis a final time, we have

Mr+1(k1, . . . , kr+1) =Mr+1(k1 − 1, . . . , kr+1) + · · ·+Mr+1(k1, . . . , kr+1 − 1)

≤bk1−1,k2Cr+1(k1 − 1, . . . , kr+1 + bk1,k2−1Cr+1(k1, k2 − 1, . . . , kr+1)

+ bk1,k2 (Cr+1(k1, k2, k3 − 1, . . . , kr+1) + · · ·+ Cr+1(k1, . . . , kr+1 − 1))

=bk1,k2 (Cr+1(k1 − 1, k, . . . , kr+1) + · · ·+ Cr+1(k1, . . . , kr+1 − 1))

=bk1,k2Cr+1(k1, . . . , kr+1),

which completes the proof. �

We now establish our less convenient, but exact, explicit formula for Mr.

Proof of Theorem 3.4. Fix integers r ≥ 2 and k1, . . . , kr ≥ 3. To compute an exact value of Mr(k1, . . . , kr),
one can repeatedly apply properties (ii) and (iii) from Definition 3.1 until reaching terms of the form
Mr(2, . . . ,m, . . . , 2) = m for some 3 ≤ m ≤ kj , where the j-th coordinate is m and all others are 2,
and then adding together all of the resulting values of m, with multiplicity.
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To count the number of occurrences of each terminating value, we count, for each ordered pair (i, j)
with 1 ≤ i, j ≤ r and i 6= j, and each 3 ≤ m ≤ kj , the exact number of appearances of the term
Mr(2, . . . , 3, . . . ,m, . . . , 2), where the i-th coordinate is 3, the j-th coordinate is m, and all other coordi-
nates are 2. This count is relevant because every terminating value of m descends from a unique term of this
form, since the process would already terminate at the only other possible “parent” (2, . . . ,m + 1, . . . , 2).
The number of applications of property (iii) required to reach such a term is

(k1 − 2) + · · ·+ (ki − 3) + · · ·+ (kj −m) + · · ·+ (kr − 2) = k1 + · · ·+ kr − 2r −m+ 1,

and the summands on the left hand side above indicate exactly how many of those steps must be al-
located to each coordinate. In other words, the desired count is precisely the multinomial coefficient(

k1+···+kr−2r−m+1
k1−2,...,ki−3,...,kj−m,...,kr−2

)
. Then, for each occurrence of Mr(2, . . . , 3, . . . ,m, . . . , 2), we apply property

(iii) a final time (ignoring all of the 2’s as directed by property (ii)) to yield

Mr(2, . . . , 3, . . . ,m, . . . , 2) = m+Mr(2, . . . , 3, . . . ,m− 1, . . . , 2).

If m > 3, the latter term is accounted for elsewhere, so we use this occurrence of Mr(2, . . . , 3, . . . ,m, . . . , 2)
exclusively to account for this one terminating value of m. If m = 3, then both terms on the right hand
side above are terminating values of 3, so the 3 should be counted twice. Fortunately, our claimed formula
has this double counting built in, as the two relevant coordinates can be chosen as i and j in either order.
Putting everything together, we have

Mr(k1, . . . , kr) =
∑

1≤i,j≤r
i 6=j

kj∑
m=3

m

(
k1 + · · ·+ kr − 2r −m+ 1

k1 − 2, . . . , ki − 3, . . . , kj −m, . . . , kr − 2

)
,

as claimed. Finally, the simplified formula in the diagonal case comes from the fact that there are r(r − 1)
ordered pairs (i, j) with 1 ≤ i, j ≤ r and i 6= j, and the multinomial coefficient is invariant under coordinate
permutation. �

Using the exact formula from Theorem 3.4, we provide a convenient, explicit lower bound for Mr, which
in the subsequent proof we show is asymptotically sharp.

Proof of Corollary 3.5. Fix integers r ≥ 2 and k1, . . . , kr ≥ 3. The desired lower bound can be seen from
previous components of this paper in two ways: a simplified version of the double induction used to prove
Theorem 3.3 (where upper bounds are replaced by lower bounds and bk1,k2 is replaced by the constant 3),
or an application of Theorem 3.4 which gives

Mr(k1, . . . , kr) =
∑

1≤i,j≤r
i6=j

kj∑
m=3

m

(
k1 + · · ·+ kr − 2r −m+ 1

k1 − 2, . . . , ki − 3, . . . , kj −m, . . . , kr − 2

)

≥ 3
∑

1≤i,j≤r
i 6=j

kj∑
m=3

(
k1 + · · ·+ kr − 2r −m+ 1

k1 − 2, . . . , ki − 3, . . . , kj −m, . . . , kr − 2

)

= 3

(
k1 + · · ·+ kr − 2r

k1 − 2, . . . , kr − 2

)
.

The finally equality follows from the fact that every path (reducing single coordinates by 1 at a time)
from (k1, . . . , kr) to (2, . . . , 2) passes through a unique point of the form (2, . . . , 3, . . . ,m, . . . , 2), with 3 in
coordinate i and m in coordinate j and the remaining coordinates 2, for some 3 ≤ m ≤ kj . If m > 3, the
remainder of the path is determined, while if m = 3 there are two choices, which as in the proof of Theorem
3.3 is accounted for by the fact that the two relevant coordinates can be chosen as i and j in either order. �
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Proof of Corollary 3.6. Fix integers r ≥ 2 and k ≥ 3. By Corollary 3.5, it suffices for us to establish the
desired asymptotic upper bound. By Theorem 3.4, we have

Mr(k) = r(r − 1)

k∑
m=3

m

(
r(k − 2)−m+ 1

k − 2, . . . , k − 2︸ ︷︷ ︸
r−2

, k − 3, k −m

)

= r(r − 1)

k∑
m=3

m
(r(k − 2)−m+ 1)!

((k − 2)!)
r−2

(k − 3)!(k −m)!

=
(r(k − 2))!

((k − 2)!)
r

k∑
m=3

m(k − 2)
(k − 2)!

(k −m)!

r(r − 1)

r(k − 2)(r(k − 2)− 1) · · · (r(k − 2)−m+ 2)

=
(r(k − 2))!

((k − 2)!)
r

k∑
m=3

m
(k − 2)!

(k −m)!

r − 1

(r(k − 2)− 1) · · · (r(k − 2)−m+ 2)
.

We note that the rightmost denominator above consists of m−2 terms, each of which is at least (r−1)(k−2),
and the ratio (k − 2)!/(k −m)! is a product of m− 2 terms, each of which is at most k − 2, hence

Mr(k) ≤ (r(k − 2))!

((k − 2)!)
r

k∑
m=3

m
(r − 1)(k − 2)m−2

((r − 1)(k − 2))m−2
=

(r(k − 2))!

((k − 2)!)
r

k∑
m=3

m

(r − 1)m−3
.

Finally, the resulting summation satisfies

k∑
m=3

m

(r − 1)m−3
= 3 +

k−3∑
j=1

3

(r − 1)j
+

k−3∑
m=1

m

(r − 1)m

≤ 3 +

∞∑
j=1

3

(r − 1)j
+

∞∑
m=1

m

(r − 1)m

= 3 +
3

r − 1
+

r − 1

(r − 2)2
,

where the infinite series are evaluated using the geometric series and its derivative. Since the resulting
quantity is 3(1 + or→∞(1)), the asymptotic formula for Mr(k) is established. �

5. The waste function

In this section, we verify our claims about the function wr, namely Theorems 3.7 and 3.8. We begin with
a separate proof of an exact formula for wr(3), implicit in Proposition 2.8.

Proposition 5.1. For an integer r ≥ 2,

wr(3) = (3− er)r!− 1.

Proof. We induct on r. When r = 2, both sides of the formula are 0, which establishes our base case. Now
suppose the formula holds for a particular r ≥ 2. By properties (ii), (iii), and (iv) in Definition 3.1. we have

wr+1(3) = wr+1(2, 3, . . . , 3) + wr+1(3, 2, 3, . . . , 3) + · · ·+ wr+1(2, 3, . . . , 3) + (r − 2)

= (r + 1)wr(3) + (r − 1)

= (r + 1)[(3− er)r!− 1] + (r − 1)

= (3− er)(r + 1)!− 1− 1

=

(
3− er −

1

(r + 1)!

)
(r + 1)!− 1

= (3− er+1)(r + 1)!− 1,

as required. �
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We now establish an explicit lower bound for wr(k), proven by reducing to the case of k = 3.

Proof of Theorem 3.7. Fix integers r ≥ 2 and k ≥ 4. To estimate wr(k), we repeatedly apply property (iii)
in Definition 3.7. The first descension is straightforward, as

wr(k) = wr(k, . . . , k)

= wr(k − 1, k, . . . , k) + · · ·+ wr(k, . . . , k, k − 1) + (r − 2)

= rwr(k − 1, k, . . . , k) + (r − 2),

where the last equality is property (iv). However, things quickly become more complicated. Once any
coordinate is reduced to 2, then in order to apply property (iii) again we must first apply property (ii) and
eliminate that coordinate. Further, some of the newly introduced additive contributions in the next level
will be (r− 3) instead of (r− 2), since we have reduced to r− 1 coordinates. After each descension, we have
a new combination of values of wr−j for some j ≥ 0, which we informally call branches, and some additive
contributions of the form (r− 2− j) for some j ≥ 0, which we informally refer to as accumulation. To avoid
ambiguity and double counting, and to take advantage of the exact formula yielded by Proposition 5.1, we
primarily consider branches of the form wr−j(4, 3, . . . , 3) for 0 ≤ j ≤ r − 3, specifically their contributions
that do not descend to branches of the form wr−j−1(4, 3, . . . , 3). We denote such contributions by [wr(k)]j .

In order to determine [wr(k)]j , we must count the number of relevant branches. Fixing 0 ≤ j ≤ r − 3, we
have

(
r
j

)
choices of which coordinates to deplete all the way down to 2, and hence eliminate with property

(ii). To descend from wr(k) to wr−j(4, 3, . . . , 3) requires a total of j(k−2)+(r−j)(k−3)−1 = r(k−3)+j−1
steps, of which k−2 must be assigned to each of the j chosen coordinates. Once those choices are made, the
remaining (r − j)(k − 3)− 1 steps must be distributed amongst the remaining r − j coordinates, with k − 4
steps assigned to one coordinate, for which there are r− j choices, and k− 3 steps assigned to all others, for
a total of

(r − j)
(

r(k − 3) + j − 1

k − 2, . . . , k − 2︸ ︷︷ ︸
j

, k − 3, . . . , k − 3, k − 4︸ ︷︷ ︸
r−j

)

possibilities. An application of properties (ii)-(iv) gives

wr−j(4, 3, . . . , 3) = wr−j(3) + (r − j − 1)wr−j−1(4, 3, . . . , 3) + (r − 2− j),

but the wr−j−1(4, 3, . . . , 3) branches will be accounted for in [wr(k)]j+1, so we have

(6) [wr(k)]j =

(
r

j

)
(r − j)

(
r(k − 3) + j − 1

k − 2, . . . , k − 2︸ ︷︷ ︸
j

, k − 3, . . . , k − 3, k − 4︸ ︷︷ ︸
r−j

)
(r − j − 2 + wr−j(3)).

We finish by noting that, so far, we have ignored all accumulation prior to branches of the form wr−j(4, 3, . . . , 3).
Robustly accounting for such accumulation without double counting has proven difficult, but we can at least
consider the family of branches that descend from wr(k) to wr(4, 3, . . . , 3) while also passing through wr(`)
for each 4 ≤ ` ≤ k − 1. Specifically,

wr(k) = rwr(k − 1, k, . . . , k) + (r − 2)

≥ r(r − 1)wr(k − 1, k − 1, k, . . . , k) + (r − 2)(1 + r)

≥ r(r − 1)(r − 2)wr(k − 1, k − 1, k − 1, . . . , k) + (r − 2)(1 + r + r(r − 1))

. . .

≥ r!wr(k − 1) + (r − 2)r!(er − 1)

. . .

≥ r!k−4wr(4) + (r − 2)(er − 1)r!(1 + r! + r!2 + · · ·+ r!k−5)

. . .

≥ r!k−3wr(4, 3, . . . , 3) + (r − 2)r!
(
(er − 1)(1 + r! + r!2 + · · ·+ r!k−5) + (er − 2)r!k−4

)
.
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While the resulting wr(4, 3 . . . , 3) branches have already been accounted for in [wr(k)]0, the accumulation
term on the right hand side has not. Simplifying this accumulation term and adding it to the previously
considered contributions, we have

wr(k) ≥ (r − 2)r!

(
(er − 1)

r!k−3 − 1

r!− 1
− r!k−4

)
+

r−3∑
j=0

[wr(k)]j ,

and the theorem now follows from (6). �

We now use Theorem 3.7 and Proposition 5.1 to establish an asymptotic lower bound for wr(k) that has
the same order of magnitude as Mr(k).

Proof of Theorem 3.8. Fix integers r ≥ 2 and k ≥ 4. Throughout the proof, o(1) refers to decay as r tends
to infinity as opposed to k. By Theorem 3.7 and Proposition 5.1, ignoring the initial accumulation term
prior to the summation and the r − j − 3 ≥ 0 term within the summation, we have

wr(k) ≥
r−3∑
j=0

(
r

j

)(
r(k − 3) + j − 1

k − 2, . . . , k − 2︸ ︷︷ ︸
j

, k − 3, . . . , k − 3, k − 4︸ ︷︷ ︸
r−j

)
(r − j)(3− er−j)(r − j)!

=

r−3∑
j=0

r!

j!

(r(k − 3) + j − 1)!(k − 3)

((k − 2)!)
j

((k − 3)!)
r−j (r − j)(3− er−j)

=
(r(k − 2))!

((k − 2)!)
r

r−3∑
j=0

r!

j!

(k − 3)(k − 2)r−j(r(k − 2))!

(r(k − 3) + j − 1)!
(r − j)(3− er−j).

Applying the uniform bound 3− er−j > 3− e, we see that Theorem 3.8 will follow if we can establish

(7)

r−3∑
j=0

aj ≥
1

2
(1− o(1)),

where aj =
r!

j!

(k − 3)(k − 2)r−j(r(k − 3) + j)!(r(k − 3) + j)

(r(k − 2))!(r(k − 3) + j)
(r−j). For j ≥ r/10, we have j →∞ as r →∞,

hence Stirling’s approximation n! =
√

2πn(n/e)n(1 + o(1)) applies to all four factorials in the definition of
aj . Therefore, bounding the resulting square root below by 1 and canceling all factors of e, we have

aj =

√
r2(k − 2)

j(r(k − 3) + j)

(r/e)r

(j/e)j
((r(k − 3) + j)/e)r(k−3)+j

(r(k − 2)/e)r(k−2)
(k − 2)r−j(k − 3)(r − j)

r(k − 3) + j
(1− o(1))

≥ rr

jj
(r(k − 3) + j)r(k−3)+j

(r(k − 2))r(k−2)
(k − 2)r−j(k − 3)(r − j)

r(k − 3) + j
(1− o(1)),

provided j ≥ r/10. Defining δ by j = (1− δ)r, we see

aj ≥
rr

((1− δ)r)(1−δ)r
(r(k − 2− δ))r(k−2−δ)

(r(k − 2))r(k−2)
(k − 2)δr(k − 3)δr

r(k − 2− δ)
(1− o(1))

= (1− δ)−(1−δ)r (k − 2− δ)r(k−2−δ)

(k − 2)r(k−2)
(k − 2)δr(k − 3)δ

k − 2− δ
(1− o(1))

≥
(
k − 3

k − 2

)
δ(1− δ)−(1−δ)r

(
1− δ

k − 2

)r(k−2−δ)
(1− o(1))

=

(
k − 3

k − 2

)
δ(1− δ)−(1−δ)r(1− δ)r

(
1− δ

k − 2

)−δr
(1− o(1))

=

(
k − 3

k − 2

)
δ(1− δ)δr

(
1− δ

k − 2

)−δr
(1− o(1)),
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provided 3/r ≤ δ ≤ 9/10, where the second to last line uses that (1− ε)m ≥ 1−mε for ε,m > 0. Defining u
by δ = u/

√
r, we then have

aj ≥
(
k − 3

k − 2

)
u√
r

(
1− u√

r

)u√r (
1− u

(k − 2)
√
r

)−u√r
(1− o(1))

provided 3/
√
r ≤ u ≤ 9

√
r/10. Since we are proving an asymptotic statement as r → ∞, it is tempting

to replace
(

1− u√
r

)u√r
with e−u

2

(1 + o(1)), but since u is not fixed with respect to r we must give this

statement its due consideration. Using the Taylor approximation log(1 − x) = −x + O(x2) for 0 ≤ x ≤ 1,
where log denotes the natural logarithm and O(f(x)) means less than a constant times f(x), we see

log


(

1− u√
r

)u√r
e−u2

 = u
√
r log

(
1− u√

r

)
+ u2 = u

√
r

(
− u√

r
+O

(
u2

r

))
+ u2 = O

(
u3√
r

)
.

The right hand side tends to 0 as r →∞ if u ≤ r1/8, so the term inside the logarithm tends to 1. The same

reasoning applies to
(

1− u
(k−2)

√
r

)−u√r
= eu

2/(k−2)(1 + o(1)). Putting things together, we have

aj ≥
(
k − 3

k − 2

)
u√
r
e−u

2( k−3
k−2 )(1− o(1)),

provided 3/
√
r ≤ u ≤ r1/8, which after backtracking through the substitutions yields

r−3∑
j=0

aj ≥
(
k − 3

k − 2

) ∑
r−r5/8≤j≤r−3

(
1− j

r

)
e−(
√
r−j/

√
r)2( k−3

k−2 )(1− o(1)).

Further, we claim that the sum on the right hand side can be asymptotically bounded below by the corre-
sponding integral, as∫ j+1

j

(
1− x

r

)
e−(
√
r−x/

√
r)2( k−3

k−2 )dx

=
1

2

∫ (
√
r− j√

r
)2

(
√
r− j+1√

r
)2
e−y(

k−3
k−2 )dy

=
k − 2

2(k − 3)

(
e
−
(√

r− j+1√
r

)2

( k−3
k−2 ) − e−

(√
r− j√

r

)2

( k−3
k−2 )

)
=

k − 2

2(k − 3)
e
−
(√

r− j√
r

)2

( k−3
k−2 )

(
e(2−

2j+1
r )( k−3

k−2 ) − 1
)

≥ k − 2

2(k − 3)
e
−
(√

r− j√
r

)2

( k−3
k−2 )

(
k − 2

k − 3

)(
2− 2j

r
− 1

r

)
=

(
1− j

r

)
e−(
√
r−j/

√
r)2( k−3

k−2 )(1− o(1)),

where the second to last line uses that ex − 1 ≥ x for x ≥ 0. Therefore,

r−3∑
j=0

aj ≥
(
k − 3

k − 2

)∫ r−3

r−r5/8

(
1− x

r

)
e−(
√
r−x/

√
r)2( k−3

k−2 )dx(1− o(1)).

Checking in with our goal, (7), and hence Theorem 3.8, will be established if we can show that the right
hand side above is bounded below by 1

2 (1− o(1)).
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Indeed, returning to the substitution y = (
√
r − x/

√
r)2 and evaluating a convergent improper integral, we

see (
k − 3

k − 2

)∫ r−3

r−r5/8

(
1− x

r

)
e−(
√
r−x/

√
r)2( k−3

k−2 )dx

=
1

2

(
k − 3

k − 2

)∫ r1/4

9
r

e−y(
k−3
k−2 )dy

=
1

2

(
k − 3

k − 2

)∫ ∞
0

e−y(
k−3
k−2 )dy(1− o(1))

=
1

2
(1− o(1)),

and the theorem follows. �

6. Examples and computations

In this section, we display some collected numerical data in order to examine the efficiency of our esti-
mates for Mr(k) and wr(k), particularly in comparison to (1) and (2), previously documented multinomial
coefficient upper bounds for multicolor Ramsey numbers. The displayed values for Mr(k) and wr(k) were
computed via an algorithm coded in Python that enacts the properties listed in Definition 3.1. The com-
putations were conducted prior to our establishment of the exact formula for Mr(k) provided in Theorem
3.4, which reassuringly matches the collected data in all cases. For exact values of wr(k), the computational
approach remains necessary.

For clarity, we note that Mr(k) − wr(k) perfectly captures the upper bound for Rr(k) available from

Proposition 2.2. Further, with M̃r(k) and w̃r(k) as defined below, M̃r(k) − w̃r(k) is the upper bound
on Rr(k) yielded by the convenient formula in Theorem 3.3 and the lower bound in Theorem 3.7, while
Mr(k) − w̃r(k) is the upper bound on Rr(k) yielded by Theorems 3.4 and 3.7, which is the best explicit
upper bound available from the results of this paper. The utilized notation and collected data are as follows.

M̃r(k) =
(

4− 2
k−1

)
(r(k−2))!
((k−2)!)r , upper bound on Mr(k) proved in Theorem 3.3

w̃r(k) : lower bound on wr(k) yielded by Proposition 5.1 and Theorem 3.7

Tr(k) = (r(k−2)+2)!

((k−1)!)2((k−2)!)r−2 , upper bound for Rr(k) as appears in [10]

Cr(k) = (r(k−1))!
((k−1)!)r , classical upper bound for Rr(k)

Table 1.

r k M̃r(k) Mr(k) w̃r(k) wr(k) Tr(k) Cr(k)

3 4 300 288 16 16 560 1680

4 4 8400 7920 514 554 25200 369600

5 4 378000 352800 24978 26788 1663200 168168000

3 5 5880 5520 214 271 11550 34650

4 5 1293600 1182720 60694 75022 4204200 63063000

3 6 124740 115500 4644 5248 252252 756756
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7. Concluding remarks

Throughout this paper, we have focused on establishing upper bounds for Rr(k) stemming from the
pigeonhole principle. While Proposition 2.2 is one of few tools available to get upper bounds on multicolor
Ramsey numbers for r ≥ 3, there are some more refined estimates in certain cases. In particular, Fettes,
Kramer, and Radziszowski showed that R4(3) ≤ 62, which beats the bound of 66 yielded by Proposition 2.8.
Further, Eliahou [2], building on work of Xu, Xie, and Chen [11], showed that

(8) Rr(3) ≤
(
e− d

24

)
r! + 1

for all r ≥ 4, where d = 66−R4(3) ≥ 4.

One could ask if these improved estimates are in any way compatible with the results of this paper, and
indeed they are. Specifically, rather than define the waste function wr(k) recursively in order to perfectly
capture the strength of Proposition 2.2, we could have alternatively defined

wr(k) = Mr(k)−Rr(k)

to be the true difference between the main term and the diagonal Ramsey number. Under this definition,
properties (i) and (iii) for wr in Definition 3.1 become lower bounds rather than equalities, which only works
in our favor, and the inequality portion of Proposition 3.2 no longer requires proof, as equality holds by
definition. Theorem 3.7 holds just as before, and leads, along with Corollary 3.6, to the following stronger
form of Theorem 3.8.

Theorem 7.1. Suppose r ≥ 2 and k ≥ 4 are integers and c > 0. If

(9) Rr(3) ≤ (3− c)r!(1 + o(1)),

then

Rr(k) ≤
(

3− c

2

) (r(k − 2))!

((k − 2)!)
r (1 + or→∞(1)).

The nominal modifications of the proof of Theorem 3.8 needed to establish Theorem 7.1 are listed below:

• Replace the constant 3− e with the constant c > 0 from the hypothesis.

• Reduce the upper limit of summation in (7) to r − 3r1/4. This assures that r − j → ∞ as r → ∞,
and allows for the invocation of (9) without concern for small values of r. This raises the lower limit
of integration on the resulting integral in y from 9/r to 9/

√
r, which still tends to 0 as r →∞.

• The remainder of the proof is identical.

Finally, we conclude our discussion with the following corollary of Theorem 7.1 and (8), which to our
knowledge is the best-known asymptotic (r →∞) upper bound for diagonal Ramsey numbers for k ≥ 4.

Corollary 7.2. Let d = 66−R4(3) ≥ 4. For integers r ≥ 2 and k ≥ 4,

Rr(k) ≤
(

3 + e

2
− d

48

)
(r(k − 2))!

((k − 2)!)
r (1 + or→∞(1)).
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