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Abstract. A standard proof of Schur’s Theorem yields that any r-coloring of {1, 2, . . . , Rr − 1} yields a

monochromatic solution to x + y = z, where Rr is the classical r-color Ramsey number, the minimum N

such that any r-coloring of a complete graph on N vertices yields a monochromatic triangle. We explore
generalizations and modifications of this result in higher dimensional integer lattices, showing in particular

that if k ≥ d + 1, then any r-coloring of {1, 2, . . . , Rr(k)d − 1}d yields a monochromatic solution to x1 +

· · · + xk−1 = xk with {x1, . . . , xd} linearly independent, where Rr(k) is the analogous Ramsey number in
which triangles are replaced by complete graphs on k vertices. We also obtain computational results and

examples in the case d = 2, k = 3, and r ∈ {2, 3, 4}.

1. Introduction

The following striking result of Schur [5] dates back over a century. Prior to the statement, we quickly
develop some notation and terminology: for N ∈ N we use [N ] to denote {1, 2, . . . , N}, and for r ∈ N we
refer to a partition of a set into r pairwise disjoint subsets (which we think of as r different colors) as an
r-coloring. Finally, we refer to collections of elements that are all the same color as monochromatic.

Theorem 1.1 (Schur’s Theorem). For every r ∈ N, there exists N ∈ N such that every r-coloring of [N ]
yields a monochromatic set of the form {x, y, x+ y}, in other words a monochromatic solution to x+ y = z.

The existence of N ∈ N that satisfies the conclusion of Theorem 1.1 implies the existence of a first N ∈ N
that satisfies said conclusion, in other words a “breaking point” at which the desired pattern switches from
non-guaranteed to guaranteed, which we refer to as the Schur number S(r). The only known Schur numbers
are S(1) = 2, S(2) = 5, S(3) = 14, S(4) = 45, and S(5) = 161. The last of these, announced in 2017, was
determined by Heule [2] using a SAT solver computation over two petabytes in size.

Even though the former predates the latter, the slickest and now most standard proof of Theorem 1.1
uses the following seminal result of Ramsey [4].

Theorem 1.2 (Ramsey’s Theorem). For r, k ∈ N, there exists N ∈ N such that every r-coloring of the edges
of a complete graph on N vertices yields a monochromatic complete subgraph on k vertices.

In a similar spirit to our definition of Schur numbers, we define the following class of Ramsey numbers.

Definition 1.3. For r, k ∈ N, let Rr(k) denote the minimum N ∈ N such that every r-coloring of the edges
of a complete graph on N vertices yields a monochromatic complete subgraph on k vertices.

The following is a quantitative version of Schur’s Theorem, generalized to any number of variables, which
in particular is a special case of a result listed in item 6.2(i) of [3]. We include the short, standard proof
below for the sake of exposition.

Theorem 1.4. Suppose N, r, k ∈ N. If N ≥ Rr(k)− 1, then every r-coloring of [N ] yields a monochromatic
solution to x1 + · · ·+ xk−1 = xk.

Proof. Suppose N, r, k ∈ N with N ≥ Rr(k) − 1. Fix an arbitrary r-coloring of [N ]. From this coloring,
define an r-coloring of the edges of a complete graph on N + 1 vertices by coloring the edge connecting
vertex i to vertex j with the color assigned to the integer |i− j|. By definition of Rr(k), there exist vertices
i1 < i2 < · · · < ik such that the edges connecting i`+1 to i` for 1 ≤ ` ≤ k − 1, and the edge connecting ik to
i1, are all the same color.
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Translating this back to the integer coloring, we have that i`+1− i` for 1 ≤ ` ≤ k− 1, and ik − i1, are all the
same color. Further, all of these numbers lie in [N ] and satisfy

(i2 − i1) + (i3 − i2) + · · ·+ (ik − ik−1) = ik − i1. �

Just as classical Schur numbers were defined from Theorem 1.1, one can define a generalized Schur number
S(r, k) as the minimum N ∈ N for which the conclusion of Theorem 1.4 holds. For example, Boza, Maŕın,
Reveulta, and Sanz [1] determined the exact formula S(3, k) = k3 − k2 − k − 1.

A natural question is whether a version of Theorem 1.1, or Theorem 1.4, holds not just in the integers,
but in other additive settings such as [N ]d, a chunk of the d-dimensional integer lattice, for d > 1. However,
without any additional modifications, the extension to higher dimensions turns out to be disappointingly
trivial. Specifically, if N ≥ S(r), then one can always find a monochromatic solution to x + y = z, which
we call a Schur triple, in an r-coloring of [N ]d by just looking along the diagonal {(n, n, . . . , n) : n ∈ [N ]}
and reducing back to the one-dimensional case. Conversely, armed with an r-coloring of [S(r) − 1] free of
Schur triples, one can color [S(r) − 1]d based solely on the first coordinate, and the lack of Schur triples is
preserved. In other words, the breaking point is exactly the same in all dimensions.

The question becomes more interesting if we insist on a level of non-degeneracy from our solutions in
higher dimensions. Our main result is the following.

Theorem 1.5. Suppose N, r, k, d ∈ N with k ≥ d + 1. If N ≥ Rr(k)d − 1, then every r-coloring of [N ]d

yields a monochromatic solution to x1 + · · ·+ xk−1 = xk with {x1, . . . , xd} linearly independent.

In addition, we approach the problem computationally in Section 4, establishing via SAT solver compu-
tations sharp results in the case d = 2, k = 3, r ∈ {2, 3}, and a nontrivial lower bound in the case d = 2,
k = 3, r = 4. We conclude by displaying examples exhibiting the lower bound in each case.

2. Notation and preliminary observations

We begin by defining a family of modified Schur numbers.

Definition 2.1. For r, k, d, j ∈ N with j ≤ min{d, k − 1}, let Sd,j(r, k) denote the minimum N ∈ N such
that every r-coloring of [N ]d yields a monochromatic solution to x1 + · · · + xk−1 = xk with {x1, . . . , xj}
linearly independent. In the absence of any of the parameters k, d, or j (r is always included, and j is never
included without d), we assume their most classical value, specifically k = 3, d = j = 1. In particular, S(r)
and S(r, k) are still as previously defined. We also let S∗d(r, k) = Sd,d(r, k).

Using our newly developed notation, Theorem 1.5 is precisely the statement that

S∗d(r, k) ≤ Rr(k)d − 1

whenever k ≥ d+1. Generalizing the idea mentioned in the introduction of looking for Schur triples along the
diagonal, the following proposition says that, all other parameters fixed, raising the dimension can only lower
the modified Schur number in question. This is the reason we consider the maximal linear independence
case j = d in our main result.

Proposition 2.2. Suppose r, k, d, j ∈ N with j ≤ min{d, k − 1}. If Sd,j(r, k) exists, then Sd+1,j(r, k) exists
and satisfies Sd+1,j(r, k) ≤ Sd,j(r, k).

Proof. Suppose r, k, d, j ∈ N with j ≤ min{d, k−1}, and assume Sd,j(r, k) exists. Let N = Sd,j(r, k), and for
x = (n1, . . . , nd) ∈ [N ]d, let x̃ = (n1, . . . , nd, nd) ∈ [N ]d+1. Fix an arbitrary r-coloring of [N ]d+1, and define
an r-coloring of [N ]d by coloring x ∈ [N ]d the same as x̃ ∈ [N ]d+1. By definition of Sd,j(r, k), there exists a
monochromatic solution to x1 + · · · + xk−1 = xk in [N ]d with {x1, . . . , xj} linearly independent. This lifts
to a monochromatic solution x̃1 + · · ·+ x̃k−1 = x̃k in [N ]d+1, and the linear independence is also preserved.
Therefore, Sd+1,j(r, k) ≤ Sd,j(r, k). �

Applying Proposition 2.2 inductively and then Theorem 1.5 yields the following corollary.
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Corollary 2.3. If r, k, d, j ∈ N and j ≤ min{d, k − 1}, then Sd,j(r, k) ≤ Rr(k)j − 1.

3. Proof of Theorem 1.5

We now establish our main result by appropriately adapting the proof of Theorem 1.4.

Proof. Suppose r, k, d ∈ N with k ≥ d + 1, let M = Rr(k), and let N = Md − 1. For 1 ≤ i ≤ M , let
yi = (i, i2, . . . , id). Fix an arbitrary r-coloring of [N ]d. We mimic the standard proof of Theorem 1.4 and
use this coloring to define an r-coloring of the edges of a complete graph on M vertices, coloring the edge
connecting vertex i to vertex j, for i < j, with the color assigned to yj − yi ∈ [N ]d. By definition of Rr(k),
there exist vertices i1 < i2 < · · · < ik such that the edges connecting ij+1 to ij for 1 ≤ j ≤ k − 1, and the
edge connecting ik to i1, are all the same color. Translating this back to the integer lattice coloring, we have
that yij+1 − yij for 1 ≤ j ≤ k − 1, and yik − yi1 , are all the same color. Further, these vectors satisfy

(yi2 − yi1) + (yi3 − yi2) + · · ·+ (yik − yik−1
) = yik − yi1 .

It remains to be shown that the vectors {yi2 − yi1 , . . . , yid+1
− yid} are linearly independent. We establish

this fact using the d× d matrix formed with the relevant vectors as its rows, in other words

A =


i2 − i1 i22 − i21 . . . id2 − id1
i3 − i2 i23 − i22 . . . id3 − id2

...
...

. . .
...

id+1 − id i2d+1 − i2d . . . idd+1 − idd

 .
First, we note that a sequence of determinant-preserving row operations transforms the (d + 1) × (d + 1)
Vandermonde matrix

V =


1 i1 i21 . . . id1
1 i2 i22 . . . id2
...

...
...

. . .
...

1 id+1 i2d+1 . . . idd+1


into 

1 i1 i21 . . . id1
0 i2 − i1 i22 − i21 . . . id2 − id1
0 i3 − i2 i23 − i22 . . . id3 − id2
...

...
...

. . .
...

0 id+1 − id i2d+1 − i2d . . . idd+1 − idd

 ,
so in particular det(A) = det(V ). This determinant, called the Vandermonde determinant, is known to
be precisely

∏
1≤j<`≤d+1(i` − ij), which is positive since our inputs are strictly increasing. For a more

self-contained approach, suppose a = (a0, . . . , ad) is a row vector satisfying V aT = 0. This implies that
i1, . . . , id+1 are all roots of the polynomial

p(x) = a0 + a1x+ · · ·+ adx
d.

If p(x) is nonzero, then it has at most d roots, so if i1, . . . , id+1 are all distinct, it must be the case that
a0 = a1 = · · · = ad = 0. Therefore, V and A are both nonsingular, which completes the proof. �

4. Examples and computations

In this section, we describe in a general way how to use a SAT solver to obtain exact values or lower
bounds for Sd,j(r, k), and operationalize the method for d = j = 2, k = 3 and r ∈ {2, 3, 4}. In that context,
we refer to a monochromatic solution to x1 + · · ·+ xk−1 = xk in Zd with x1, . . . , xj linearly independent as
a j-nondegenerate Schur k-tuple, while we drop the j descriptor if j = k − 1.

Consider an r-coloring of [N ]d defined by ∆ : [N ]d → {1, 2, ..., r}. Following the lead of Boza, et al. [1] and
Heule [2], we write a logical expression in conjunctive normal form (cnf) which is true if and only if ∆ yields
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no monochromatic j-nondegenerate Schur k-tuple. For each p ∈ [N ]d and for each m ∈ {1, 2, ..., r−1}, define
a boolean variable φm(p) by

φm(p) =

{
True if ∆(p) = m

False otherwise
.

(Note that ∆(p) = r when φ1(p), φ2(p), ..., φr−1(p) are all false). In order to guarantee that ∆ assigns exactly
one color to each point, our cnf expression must include

D =
∧

p∈[N ]d

∧
i<j≤r−1

(
¬φi(p) ∨ ¬φj(p)

)
.

Now, let F be the family of all j-nondegenerate Schur k-tuples in [N ]d. We observe that ∆ yields no
monochromatic j-nondegenerate Schur k-tuple if and only if for each {p1, p2, ..., pk} ∈ F and for each color
i ∈ {1, 2, ..., r}, ∆ assigns at least one of the k points to a color that is not i. Thus, for each {p1, p2, ..., pk} ∈ F
we include the expression

C{p1,p2,...,,pk} =

 ∧
i∈[r−1]

 ∨
j∈[k]

¬φi(pj)

 ∧
 ∨

i∈[r−1]

∨
j∈[k]

φi(pj)

 .

Now, set

C =
∧

{p1,p2,...,pk}∈F

C{p1,p2,...,pk}.

Then, ∆ induces a coloring with no j-nondegenerate Schur k-tuples if and only if

(1) D ∧ C.

In the case d = j = 2, k = 3, and r ∈ {2, 3, 4}, we ran (1) through the following SAT solvers, with some
computations completed on the Maple super cluster at the University of Mississippi, access to which was
generously provided by the Mississippi Center for Supercomputing Research:

• https://github.com/arminbiere/lingeling

• https://github.com/arminbiere/cadical

• https://github.com/arminbiere/kissat

• https://github.com/msoos/cryptominisat

Our computations yielded S∗2 (2, 3) = 7, S∗2 (3, 3) = 18, and S∗2 (4, 3) ≥ 49, as well as examples exhibiting the
lower bound in each case displayed in the three figures below, with which we conclude our discussion.

Figure 1. A 2-coloring of [6]2 with no nondegenerate Schur triples.
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Figure 2. A 3-coloring of [17]2 with no nondegenerate Schur triples.

Figure 3. A 4-coloring of [48]2 with no nondegenerate Schur triples.
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