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Abstract. For A ⊆ R, let A+A = {a+b : a, b ∈ A} and AA = {ab : a, b ∈ A}. For k ∈ N, let SP (k) denote

the minimum value of max{|A+ A|, |AA|} over all A ⊆ N with |A| = k. Here we establish SP (k) = 3k − 3
for 2 ≤ k ≤ 7, the k = 7 case achieved for example by {1, 2, 3, 4, 6, 8, 12}, while SP (k) = 3k− 2 for k = 8, 9,

the k = 9 case achieved for example by {1, 2, 3, 4, 6, 8, 9, 12, 16}. For 4 ≤ k ≤ 7, we provide two proofs using

different applications of Freiman’s 3k− 4 theorem; one of the proofs includes extensive case analysis on the
product sets of k-element subsets of (2k− 3)-term arithmetic progressions. For k = 8, 9, we apply Freiman’s

3k− 3 theorem for product sets, and investigate the sumset of the union of two geometric progressions with
the same common ratio r > 1, with separate treatments of the overlapping cases r ̸= 2 and r ≥ 2.

1. Introduction

For A ⊆ R, we define the sumset A+A = {a+ b : a, b ∈ A} and the product set AA = {ab : a, b ∈ A}. It
is a standard fact, and a pleasant exercise to verify, that if A ⊆ R and |A| = k, then

(1) 2k − 1 ≤ |A+A| ≤ k2 + k

2
,

with equality holding on the left-hand side if and only if A is an arithmetic progression, a set of the form
{x, x+d, . . . , x+(k−1)d} with x, d ∈ R and d > 0. Here and throughout the paper we use |X| to denote the
number of elements of a finite set X. The right-hand side of (1) is precisely the number of pairs (a, b) ∈ A×A
with a ≤ b, so equality holds on the right-hand side if and only if A has no repeated sums other than the
ones guaranteed by commutativity. Such a set is known as a Sidon set.

By viewing multiplication as addition of exponents, we see that the same inequalities (1) hold for |AA|,
provided A ⊆ (0,∞). This time, equality holds on the left-hand side if and only if A is a geometric progression,
a set of the form {x, rx, . . . , rk−1x} with x > 0 and r > 1. Since it is impossible to be both an arithmetic
and geometric progression when k ≥ 3 (essentially the arithmetic mean-geometric mean inequality), at least
one of |A+A| and |AA| must exceed the minimum value of 2k − 1. But by how much?

In this direction, for k ∈ N, we define

SP (k) = min
A⊆N
|A|=k

(max{|A+A|, |AA|}) .

Since the question’s introduction by Erdős and Szemerédi [6] in 1983, an extensive literature has developed on
the asymptotic behavior of SP (k) as k → ∞, referred to as the sum-product problem. Erdős and Szemerédi
themselves showed SP (k) ≥ ck1+δ for constants c, δ > 0, at the same time conjecturing SP (k) = k2−o(1).
Roughly and asymptotically speaking, the conjecture says one cannot do much better than A = {1, 2, . . . , k},
which has |A+A| = 2k−1 and |AA| = k2/(log k)δ+o(1), where δ = 1−(1+log log 2)/ log 2 ≈ .086 1. The task
of estimating |AA| in this case is known as the Erdős multiplication table problem, for which the interested
reader can refer to [5] and [8]. Over the ensuing four decades, incremental progress has been made toward the
Erdős-Szemerédi conjecture, the best results (so far) coming through connections with incidence geometry
(see, in chronological order, [16], [3], [7], [19], [14], [13], [20], and [17]). The current best lower bound is due

to Rudnev and Stevens [18], who showed SP (k) ≥ k
4
3+

2
1167−o(1).

1We use o(1) to denote a function tending to 0 as k → ∞, and we use log to denote the natural logarithm.
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In contrast with previous literature on the sum-product problem, we eschew growth estimates for SP (k)
as k → ∞, opting instead for the more modest and elementary goal of precisely determining SP (k) for small
values of k. Our main results are summarized as follows.

Theorem 1.1. We have the following exact values for SP (k):

SP (k) =

{
3k − 3, 2 ≤ k ≤ 7

3k − 2, k = 8, 9
.

We note that, in addition to the trivial fact SP (1) = 1, the k = 2, 3 cases of Theorem 1.1 are immediate,
as |A + A| = |AA| = 3 whenever |A| = 2, and max{|A + A|, |AA|} = 6 whenever |A| = 3, the latter by the
aforementioned arithmetic mean-geometric mean inequality. Further, since SP (k) is defined as a minimum,
we can establish the required upper bounds for Theorem 1.1 by exhibiting a single example for each value
of k, as is done in Table 1 below. We encourage the reader to verify the entries in the third and fourth
columns, and we do not claim these examples to be unique, even up to scaling.

Table 1. Examples showing SP (k) ≤ 3k−3 for 4 ≤ k ≤ 7 and SP (k) ≤ 3k−2 for k = 8, 9.

k A |A+A| |AA|
4 {1, 2, 3, 4} 7 9
5 {1, 2, 3, 4, 6} 10 12
6 {1, 2, 3, 4, 6, 8} 13 15
7 {1, 2, 3, 4, 6, 8, 12} 18 18
8 {1, 2, 3, 4, 6, 8, 9, 12} 20 22
9 {1, 2, 3, 4, 6, 8, 9, 12, 16} 25 25

We dedicate the remainder of the paper to establishing the required lower bounds on SP (k) for 4 ≤ k ≤ 9.
Our general approach is as follows: if one of |A+A| or |AA| is very small (close to its minimum value), then
known structural characterizations should allow us to conclude that the other is large (close to its maximum
value). This core idea is not new, as seen in the few sums, many products problem, dating to work of Elekes
and Ruzsa [4], and the few products, many sums problem, for which the interested reader should refer to [15].

In Section 2, we provide two separate proofs for 4 ≤ k ≤ 7, each using a different application of Freiman’s
characterization of k-element sets with sumset size at most 3k − 4. The first proof, Section 2.1, is the more
elementary, and includes case analysis on the product sets of k-element subsets of (2k − 3)-term arithmetic
progressions, which may be of independent interest. The second proof, Section 2.2, is less labor intensive,
but requires a few more mature tools, as well as the fact that a geometric progression of positive integers is
a Sidon set. We provide a proof of this latter fact using the rational root theorem, the application of which
inspired much of our work in Section 3. In that section, we tackle the trickier cases k = 8, 9 using Frieman’s
characterization of k-element sets with sumset size at most 3k − 3, and analysis of the sumsets of unions of
two geometric progressions with the same common ratio r > 1, with separate treatments for the overlapping
cases r ̸= 2 and r ≥ 2. Most of these latter results are generalized to include geometric progressions with
negative elements, and some may also be of independent interest.

2. Two proofs of SP (k) ≥ 3k − 3 for 4 ≤ k ≤ 7

Establishing the inequality SP (k) ≥ 3k−3 is equivalent to ruling out the existence of A ⊆ N with |A| = k
and |A + A|, |AA| ≤ 3k − 4. Fortunately, the right-hand side of the latter inequality provides access to the
following precise characterization of Freiman [10].

Theorem 2.1 (Freiman’s 3k − 4 theorem). If A ⊆ Z with |A| = k and |A+A| = 2k − 1 + b ≤ 3k − 4, then
A is contained in an arithmetic progression of length k + b.
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While the original paper [10] is in Russian, an English translation of Freiman’s proof of Theorem 2.1, which
is an induction on k requiring only clever counting, basic modular arithmetic, and patient case analysis, can
be found on pages 12-13 of [9]. The argument does rely on the fact that the sets in question lie in Z, which
we discuss further in Section 2.2.

2.1. Theorem 2.1 applied on the sum side. One approach to our goal for 4 ≤ k ≤ 7 is to assume A ⊆ N
with |A| = k and |A+A| ≤ 3k− 4, then try to show that |AA| is necessarily at least 3k− 3. To this end, we
apply Theorem 2.1 as written, with b = k− 3, to conclude that A is contained in a (2k− 3)-term arithmetic

progression. In other words, A = {x + ad : a ∈ Ã} for some x, d > 0 and some Ã ⊆ {0, 1, . . . , 2k − 4} with

|Ã| = k. Changing x if needed, we can assume 0 ∈ Ã without loss of generality. In particular,

AA = {x2 + (a+ b)dx+ abd2 : a, b ∈ Ã},
which we can think of as the image of B = {(a+ b, ab) : a, b ∈ Ã} under the map f(m,n) = x2 +mdx+nd2.
While f need not be injective on B, it does have the property that f(m′, n′) > f(m,n) if m′ ≥ m, n′ ≥ n,
and max{m′ − m,n′ − n} > 0, independent of x and d. Therefore, it suffices to find a chain of elements
(m1, n1), . . . , (m3k−3, n3k−3) ∈ B satisfying mi+1 ≥ mi, ni+1 ≥ ni, and max{mi+1 −mi, ni+1 − ni} > 0 for
all 1 ≤ i ≤ 3k − 4, as such a chain corresponds to a strictly increasing sequence of 3k − 3 elements of AA.

To complete the proof, such a chain must be found for each 4 ≤ k ≤ 7 and each Ã ⊆ {0, 1, . . . , 2k − 4}
with 0 ∈ Ã and |Ã| = k. The number of options for Ã is

(
2k−4
k−1

)
, which is 4, 15, 56, 210 for k = 4, 5, 6, 7,

respectively. We display one k = 6 example in Figure 1 below, and we include diagrams of all 285 cases here:
https://github.com/andrewlott99/SP-k-.

(0, 0) (4, 0) (5, 0) (6, 0) (7, 0) (8, 0)

(8, 16) (9, 20) (10, 24) (11, 28) (12, 32)

(10, 25) (11, 30) (12, 35) (13, 40)

(12, 36) (13, 42) (14, 48)

(14, 49) (15, 56)

(16, 64)

Figure 1. The red path corresponds to a strictly increasing sequence of 15 elements of AA
when k = 6 and Ã = {0, 4, 5, 6, 7, 8}. This is one of

(
8
5

)
= 56 cases for k = 6. In this and

most other cases, longer qualifying paths exist, but we do not prioritize optimality in our
analysis, only reaching 3k − 3.

2.2. Theorem 2.1 applied on the product side. Another approach to our desired lower bound on SP (k)
is to assume A ⊆ N with |A| = k and |AA| ≤ 3k − 4, then try to argue |A + A| ≥ 3k − 3. This begs the
question as to whether an analog of Theorem 2.1 holds under the assumption of a small product set. In the
introduction, we were able to immediately transfer the bounds (1) from sumsets to products sets by viewing
multiplication as addition of exponents. Things are not quite so simple here, because Freiman’s proof of
Theorem 2.1 is specific to Z. Fortunately, this issue is well-trodden, and it is remarked repeatedly in the
literature that Theorem 2.1 holds with Z replaced by any torsion-free abelian group (see the introductions
of [11] and [1], for example). For completeness, we include a proof of our desired special case, the meat of
which can be found in Lemma 5.25 in [21].

Corollary 2.2. If A ⊆ (0,∞) with |A| = k and |AA| = 2k − 1 + b ≤ 3k − 4, then A is contained in a
geometric progression of length k + b.
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Proof. Suppose A ⊆ (0,∞) with |A| = k and |AA| = 2k − 1 + b ≤ 3k − 4, and let G be the multiplicative
subgroup of (0,∞) generated by A. Since G is torsion-free (x ̸= 1 =⇒ xn ̸= 1 for all n ∈ N), we know by
the classification of finitely generated abelian groups that G is isomorphic to (Zj ,+) for some j ≤ k, say via
ψ : G→ Zj . In particular, |AA| = |ψ(A) +ψ(A)|, and geometric progressions in G correspond to arithmetic
progressions in Zj .

After possibly translating, we can assume ψ(A) ⊆ B = [0, L]j ∩ Zj for some L ∈ N. Then, letting M = 2L,
the map φ(x1, . . . , xj) = x1 + x2M + · · ·+ xjM

j−1 is a bijection satisfying

a+ b = c+ d⇐⇒ φ(a) + φ(b) = φ(c) + φ(d)

for all a, b, c, d ∈ B. Such a map is known as a Freiman 2-isomorphism, which preserves both sumset sizes
and arithmetic progressions, as the latter are defined by a system of equations of the form x + y = z + z.
Finally, Theorem 2.1 yields that φ(ψ(A)) is contained in an arithmetic progression P ⊆ φ(B) ⊆ Z of length
at most k + b, and hence A is contained in the geometric progression ψ−1(φ−1(P )). □

Armed with Corollary 2.2, we immediately get a best-case lower bound on |A + A| from the fact that a
geometric progression of positive integers is a Sidon set. This is something of a folklore fact that we do
not claim as original, but we include a proof at a level of generality that we do not believe has previously
appeared, first recalling the rational root theorem.

Lemma 2.3 (Rational root theorem). Suppose p(x) = akx
k + · · ·+ a1x+ a0 ∈ Z[x], ak ̸= 0. If p(m/n) = 0

with m,n ∈ Z, gcd(m,n) = 1, then m | a0 and n | ak.

In the following lemma, and the remainder of the paper, we extend the definition of geometric progression
to R, allowing negative starting points and common ratios, excluding 0 for both.

Lemma 2.4. If A ⊆ R is contained in a geometric progression with common ratio r ∈ Q, r ̸= −2, then A
is a Sidon set. In particular, if |A| = k, then |A+A| = (k2 + k)/2.

Proof. Suppose A ⊆ {rnx}n∈Z with r, x ̸= 0, r ∈ Q. If r = −1, then |A| ≤ 2 and the result is trivial.
Otherwise, we assume |r| > 1, and a nontrivial repeated sum of elements of A corresponds to an equation of
the form rax+ rbx = rcx+ rdx with a ≥ b, c ≥ d, b > d. This rearranges to rb−d(ra−b + 1)− rc−d − 1 = 0.
If c > d, the rational root theorem forbids all r ∈ Q with |r| > 1, while if c = d, it only allows r = ±2.
However, if r = 2, the left side of the equation is at least 2(2) − 2 = 2, so this case is ruled out as well. In
other words, if r ̸= −2, no such nontrivial repeated sum exists. □

As for cases not covered in Lemma 2.4, the conclusion fails for r = −2, as seen by the solution 4− 2 = 1+1,
holds for irrational r with |r| > 2 because of the rapid growth of the progression, and fails for certain

irrational r with 1 < |r| < 2. As an example of the latter, letting φ = (1 +
√
5)/2, we see that {1, φ2, φ3} is

a three-term arithmetic progression, in other words 1 + φ3 = φ2 + φ2. We now combine Corollary 2.2 and
Lemma 2.4 to conclude the section.

Corollary 2.5. Suppose A ⊆ N with |A| = k. If |AA| ≤ 3k − 4, then |A + A| = (k2 + k)/2. In particular,
SP (k) ≥ 3k − 3 for all k ∈ N.

3. Proof of SP (k) ≥ 3k − 2 for k ≥ 8

For k ≥ 8, establishing the inequality SP (k) ≥ 3k − 2 is equivalent to ruling out the existence of A ⊆ N
with |A| = k and |A+A|, |AA| ≤ 3k−3. Theorem 2.1 is no longer sufficient, but Freiman established another
classification that perfectly fits the bill. The following is a less precise version of Theorem 1.11 in [9].

Theorem 3.1 (Freiman’s 3k − 3 theorem). If A ⊆ Z with |A| = k > 6 and |A+A| ≤ 3k − 3, then either A
is contained in an arithmetic progression of length 2k+ 1, or A is a union of two arithmetic progressions of
the same step size.

Completely analogous to the deduction of Corollary 2.2 from Theorem 2.1, we can appeal to Freiman iso-
morphism and apply Theorem 3.1 on the product side.
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Corollary 3.2. If A ⊆ (0,∞) with |A| = k > 6 and |AA| ≤ 3k − 3, then either

(i) A is contained in a geometric progression of length 2k + 1, or
(ii) A is a union of two geometric progressions with the same common ratio.

We know from Lemma 2.4 that if A falls into case (i) of Corollary 3.2, then A is a Sidon set and
|A+A| = (k2 + k)/2. Therefore, we focus the remainder of the section on case (ii), and the results to come
are summarized as follows.

Theorem 3.3. If A ⊆ (0,∞) with |A| = k is a union of two geometric progressions with the same common
ratio r > 1, then

|A+A| ≥


(k2 − 3k + 8)/2 k odd, r ∈ Q, r ̸= 2

(k2 − 3k + 10)/2 k even, r ∈ Q, r ̸= 2⌈
((k + 1)2 + 3)/4

⌉
r ≥ 2

22 k = 8, r ∈ Q, r ≥ 2

.

Note that, for our purposes, the condition r ∈ Q is not restrictive, as the common ratio in a geometric
progression of integers is guaranteed to be rational. We make the distinction here because one of our proofs
does not rely on the rationality of r. Crucially, for every k ≥ 8 and every r ∈ Q, r > 1, at least one case in
the conclusion of Theorem 3.3 guarantees |A+A| ≥ 3k − 2, yielding our desired result.

Corollary 3.4. For all k ≥ 8, we have SP (k) ≥ 3k − 2.

The r ̸= 2 cases of Theorem 3.3 are covered in Section 3.1, while the r ≥ 2 cases are covered in Section 3.2.

3.1. The r ̸= 2 case. In the proofs that follow, we make frequent use of the fact that if A ⊆ Z is finite with
A = B ∪ C, then A+A = (B +B) ∪ (C + C) ∪ (B + C), and hence

(2) |A+A| ≥ |B+B|+ |C+C|+ |B+C|− |(B+B)∩ (C+C)|− |(B+B)∩ (B+C)|− |(C+C)∩ (B+C)|
by the inclusion-exclusion principle. In the case of interest, B and C are geometric progressions of the same
common ratio r > 1. The pairwise intersections in (2) can certainly be nonempty, and elements in B + C
can certainly have multiple representations, pulling |B + C| away from its maximum. However, if r ∈ Q
and r ̸= 2, then such coincidences are limited to a single “geometric family” in each case. This fact, shown
through repeated applications of the rational root theorem, is captured in the following lemma, which also
allows for negative starting points and common ratios.

Lemma 3.5. For fixed r ∈ Q with 1 < |r| ≠ 2, and z ∈ R \ {rn : n ∈ Z} with z ̸= 0, there is at most one
solution (a, b, c) to each of the following equations under the given restrictions, with the listed exceptions:

(i) ra + 1 = (rb + rc)z, a, b, c ∈ Z, a ≥ 0, b ≥ c, except when r = −3 and z = −rn for some n ∈ Z,
(ii) ra + 1 = rb + rcz, a, b, c ∈ Z, a ≥ 0, except when r = −3 and z = −5rn/3 for some n ∈ Z, or

r = −3/2 and z = 14rn/9 for some n ∈ Z,
(iii) ra − 1 = (rb − rc)z, a, b, c ∈ Z, a > 0. The conclusion also holds for (iii) when r = 2, but not r = −2.

Proof. Suppose r ∈ Q with |r| > 1, |r| ≠ 2, z ∈ R \ {rn : n ∈ Z}, and z ̸= 0.

(i) Suppose there exists a solution of the form ra +1 = (rb + rc)z with a, b, c ∈ Z, a ≥ 0, b ≥ c. Replacing
rcz with z and b− c with b for convenience without loss of generality, we have ra + 1 = (rb + 1)z with
b ≥ 0. Since z ̸= 1, a and b cannot both be 0, so we assume without loss of generality that a > 0,
otherwise replacing z with 1/z.

Now, suppose we have another solution ra
′
+ 1 = (rb

′
+ rc

′
)z with a′, b′, c′ ∈ Z, a′ ≥ 0, b′ ≥ c′. Cross

multiplying the two solutions and canceling z, this yields

(3) rc
′
(ra + 1)(rb

′−c′ + 1) = (rb + 1)(ra
′
+ 1),

noting that all exponents in (3) are nonnegative with the possible exception of c′, while only a is
necessarily positive.
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Case 1: c′ ̸= 0. If c′ > 0, then the left side of (3) has constant term 0 and leading term 2ra+b′ if b′ = c′

and ra+b′ otherwise. Meanwhile, the right hand side is either constant 4, achieved only if b = a′ = 0,
or it has leading and constant coefficient 1 or 2. In any case (3) can be rearranged to an integral
polynomial, set equal to 0, with leading coefficient at most 2 in absolute value, and constant coefficient
the same as that of (rb + 1)(ra

′
+ 1). If b = a′ = 0, the rational root theorem allows for the possibility

r = ±4. However, substituting r = ±4 into (3) in this case yields ((±4a) + 1)((±4b
′−c′) + 1) = ±41−c′ ,

which is impossible because, since a > 0 and b′ − c′ ≥ 0, the left side is an integer with an odd divisor
greater than 1. Otherwise, regardless of b and a′, the only rational possibilities with |r| > 1 are r = ±2,

which are excluded by hypothesis. Similar reasoning applies to the case c′ < 0 by moving rc
′
to the

other side of the equation, except that now it is the leading coefficient that could have absolute value
as high as 4, which does not provide any other possible rational r with |r| > 1.

Case 2: c′ = 0. Here we have

(4) (ra + 1)(rb
′
+ 1) = (rb + 1)(ra

′
+ 1),

all exponents are nonnegative, and a > 0.

Case 2a: b = a′ = 0. In this case, (4) rearranges to ra+b′ + ra + rb
′ − 3 = 0. If b′ = 0, this collapses

to 2(ra − 1) = 0, forcing |r| = 1. If b′ > 0, the leading coefficient is 1 and the constant term is
−3, so the only possible rational roots with |r| > 1 are r = ±3. When r = 3, the left-hand side is
clearly bigger than the right, but for r = −3, there is one solution with a = b′ = 1, in other words
(−3 + 1)(−3 + 1) = (1 + 1)(1 + 1). This accounts for the exception in item (i) in the lemma.

Case 2b: b+a′ > 0. If the two sides of (4) are not identical (meaning equal as polynomials), then, after
canceling common factors of r, we have an integral polynomial, set equal to 0, with nonzero constant
term at most 2 in absolute value, ruling out rational r with 1 < |r| ≠ 2. The remaining case is the two
sides of (4) are identical, hence either a = b, which implies z = 1 so is prohibited, or a = a′ and b = b′,
in which case the two solutions to (i) are in fact the same.

(ii) We make a similar substitution and suppose we have two solutions ra+1 = rb+z and ra
′
+1 = rb

′
+rc

′
z

with a, b, a′, b′, c′ ∈ Z, a, a′ ≥ 0. Note that b, b′ ̸= 0 since z is not a power of r. Solving both equations
for z and setting them equal to each other yields

(5) rc
′
(ra + 1− rb) = ra

′
+ 1− rb

′
.

Case 1: bb′ < 0. We assume b < 0 and b′ > 0, with the opposite case handled identically. Then, we
have rc

′+b(ra−b + r−b − 1) = ra
′
+ 1− rb

′
, with all exponents nonnegative except possibly c′ + b.

Case 1a: c′ + b ̸= 0. If c′ + b > 0, we have an integral polynomial, set equal to 0, with constant term
the same as that of ra

′
+ 1, which is 1 or 2, ruling out rational r with 1 < |r| ≠ 2. The case c′ + b < 0

is handled identically after dividing rc
′+b to the other side.

Case 1b: c′ + b = 0. Here we have ra−b + r−b + rb
′ − ra

′ − 2 = 0, with all exponents positive except
possibly a′. If a′ > 0, then the constant term is −2, ruling out rational r with 1 < |r| ≠ 2. If a′ = 0,

we have ra−b + r−b + rb
′ − 3 = 0, with all exponents positive. If a = b + b′ = 0, this collapses to

3(rb
′ −1) = 0, forcing |r| = 1. If there is a unique maximum amongst a−b, −b, and b′, then the leading

coefficient is 1 and the constant term is −3, so the only possible rational r with |r| > 1 are r = ±3. If
r = 3, the left side is clearly bigger, but there is a solution with r = −3, namely b′ = −b = a = 1, which
accounts for the first exception in item (ii). If instead two out of a− b, −b, and b′ are equal, while the
third is smaller, we have an equation of the form rj(2rℓ + 1) = 3 with j, ℓ > 0. The left side is clearly
bigger in absolute value for r > 1 and r = −3, and all other rational r with |r| > 1 are ruled out except
r = −3/2. However, there is a solution with r = −3/2, namely j = ℓ = 1, which corresponds to a = 0,
b = −2, and b′ = 1, and accounts for the second exception in item (ii).

Case 2: b, b′ > 0. If c′ ̸= 0, we get an integral polynomial, set equal to 0, with nonzero constant term
at most 2 in absolute value. If c′ = 0, we have ra+ rb

′
= rb+ ra

′
. Lemma 2.4 then implies either a = b,

which yields z = 1 so is prohibited, or a = a′ and b = b′, so the two solutions to (ii) are the same.
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Case 3: b, b′ < 0. Here we have rc
′+b−b′(ra−b+r−b−1) = ra

′−b′ +r−b′ −1, with all exponents positive
except possibly c′+ b− b′. If c′+ b− b′ ̸= 0, we get an integral polynomial, set equal to 0, with constant
term 1, ruling out rational r with |r| > 1. If c′ + b − b′ = 0, we have ra−b + r−b = ra

′−b′ + r−b′ ,
which by Lemma 2.4 implies either b = b′ and a = a′, and hence c′ = 0, as desired, or a− b = −b′ and
−b = a′ − b′. In the latter case, we have a = b− b′ = −a′, but since a, a′ ≥ 0 this implies a = a′ = 0,
so b = b′ and c′ = b′ − b = 0, completing the proof for (ii).

(iii) In this item, we do not invoke r ̸= 2. We again substitute and suppose ra − 1 = (rb − 1)z and

ra
′ − 1 = (rb

′ − rc
′
)z with a, b, a′, b′, c′ ∈ Z, a, a′ > 0. Multiplying, and canceling z, gives

(ra − 1)(rb
′
− rc

′
) = (ra

′
− 1)(rb − 1).

Let m = max{0,−b,−b′,−c′}, and multiply both sides by rm to yield

(6) (ra − 1)(rb
′+m − rc

′+m) = (ra
′
− 1)(rb+m − rm),

where now all exponents are nonnegative and min{m, b + m, b′ + m, c′ + m} = 0. If this minimum
is uniquely attained, we get an integral polynomial, set equal to 0, with constant term 1, ruling out
rational r with |r| > 1. Otherwise, it must be that exactly one of b′ +m, c′ +m is 0 and exactly one
of b+m,m is 0. By symmetry, it suffices to consider the following two cases:

Case 1: c′ = m = 0, b, b′ > 0. Returning to (6), we have

(7) (ra − 1)(rb
′
− 1) = (ra

′
− 1)(rb − 1),

with all exponents positive. If the two sides of (7) are not identical, then either there is a unique
minimum in {a, b, a′, b′}, and the equation rearranges to an integral polynomial, set equal to 0, with
constant term 1, or one of a = b′ or b = a′ are strictly less than the other pair of exponents. In the latter
case, (7) clearly does not hold for r > 1, and further (7) can be rearranged to an integral polynomial,
set equal to 0, with constant term 2, so the only possibly rational r with |r| > 1 is r = −2, which is
excluded by hypothesis. If the two sides of (7) are identical, then either a = b, which implies z = 1 so
is prohibited, or a = a′ and b = b′, so the two solutions to (iii) are in fact the same.

Case 2: c′ = b = −m, m, b′ +m > 0. Returning to (6), we have

(8) (ra − 1)(rj − 1) = (ra
′
− 1)(1− rm),

where j = b′ +m, and all exponents are positive. This rearranges to an integral polynomial, set equal
to 0, with constant term 2, so the only possible rational r with |r| > 1 are r = ±2. However, if r > 1,
then the left side of (8) is positive while the right side is negative, so r = 2 can be ruled out without
invoking a hypothesis, which at long last completes the proof of the lemma.

□

Parts (i) and (ii) of Lemma 3.5 fail when r = 2, as seen by type (i) solutions 23 + 1 = (2 + 1)3 and
2+1 = (2−1+2−1)3, and type (ii) solutions 22+1 = 2+3 and 2+2 = 1+3. Our application of Lemma 3.5
is quantitative, but we first state its consequences in a qualitative form that may be of independent interest.

Corollary 3.6. Suppose r ∈ Q with |r| > 1, r ̸= −2, x, y ̸= 0, B = {rnx}n∈Z, C = {rny}n∈Z, and B ̸= C.

(i) For every a ̸= 0, we have R(a) = |{(b, c) ∈ B × C : b+ c = a}| ≤ 2.
(ii) The set {a ∈ B +C : R(a) > 1} is either empty, {0}, or a geometric progression with common ratio r.
(iii) If r /∈ {2,−3/2,−3}, then (B+B)∩ (C+C), (B+B)∩ (B+C), and (C+C)∩ (B+C) are each either

empty or a geometric progression with common ratio r, with the elements in the latter two intersections
uniquely represented as b+ c with b ∈ B, c ∈ C.

Proof. Each element in the three intersections of interest, and each repeated representation in B+C, yields
an equation that uniquely scales by a power of r to an equation treated in Lemma 3.5, with z = y/x or
z = x/y as appropriate. Since at most one such solution of each type exists, the result follows. The special
case a = 0 in items (i) and (ii) comes from the case B = −C. □
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The following corollary captures our quantitative application of Lemma 3.5. The r ∈ Q, r ̸= 2 cases in
Theorem 3.3 then follow by taking m = ⌈k/2⌉ and n = ⌊k/2⌋, which is the worst-case scenario.

Corollary 3.7. Suppose x, y ̸= 0 and r ∈ Q with |r| > 1, r /∈ {2,−3/2,−2,−3}. If A = B ∪ C with
B = {x, rx, . . . , rm−1x}, C = {y, ry, . . . , rn−1y}, B ∩ C = ∅, and m ≥ n > 0, then

|A+A| ≥ ((m+ n)2 +m+ n)/2−min{m− 1− α, n− 1} − 2min{m− 1, n} − (n− 1),

where α = 0 if 0 ∈ B + C and α = 1 otherwise.

Proof. Suppose x, y ̸= 0 and r ∈ Q with |r| > 1, |r| ≠ 2. Suppose A = B∪C, where B = {x, rx, . . . , rm−1x},
C = {y, ry, . . . , rn−1y}, B ∩ C = ∅, 0 /∈ B + C, and m ≥ n > 0. We first note that

(9) |B +B| = (m2 +m)/2, |C + C| = (n2 + n)/2

by Lemma 2.4. That same lemma assures that if y = rjx for some j ∈ Z, then A is contained in a single
geometric progression and hence |A+ A| = ((m+ n)2 +m+ n)/2, so we assume this not to be the case for
the remainder of the proof.

By Lemma 3.5, the elements of (B+B)∩ (C+C), if there are any, correspond to a single family of solutions
(ra0+j +rb0+j)x = (rc0+j +rd0+j)y, 0 ≤ b0+ j ≤ a0+ j < m, 0 ≤ d0+ j ≤ c0+ j < n, min{a0, b0, c0, d0} = 0,
stemming from the at most one solution of type (i) with z = y/x. Since max{a0, c0} ≥ 1, we see that

(10) |(B +B) ∩ (C + C)| ≤ min{m− 1, n}.

An example with m = n = 4 is shown in the figure below:

1 3 9 27

2 6 18 54

Figure 2. An illustration of (B + B) ∩ (C + C) = {4, 12, 36}, where B = {1, 3, 9, 27} and
C = {2, 6, 18, 54}. Each color shows a member of the single geometric family of solutions,
stemming from the solution 3 + 1 = 2 + 2.

Similarly, potential elements of (B+B)∩ (B+C) correspond to a family (ra0+j + rb0+j)x = rc0+jx+ rd0+jy
with 0 ≤ b0 + j ≤ a0 + j < m, 0 ≤ c0 + j < m, 0 ≤ d0 + j < n, min{a0, b0, c0, d0} = 0, stemming from the at
most one solution of type (ii) with z = y/x. Once again max{a0, c0} ≥ 1, and the number of solutions is at
most min{m− 1, n}. The same reasoning applies to elements of (C + C) ∩ (B + C), now with z = x/y and
the terms ra0y, rc0y with max{a0, c0} ≥ 1, so the number of solutions is at most n− 1. To summarize,

(11) |(B +B) ∩ (B + C)| ≤ min{m− 1, n}, |(C + C) ∩ (B + C)| ≤ n− 1.

See the figure below for another example when m = n = 4.

8 12 18 27

16 24 36 54

Figure 3. An illustration of (B+B)∩(B+C) = {24, 36, 54}, where B = {8, 12, 18, 27} and
C = {16, 24, 36, 54}. Each color shows a member of the single geometric family of solutions,
stemming from the solution 12 + 12 = 8 + 16.
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Finally, of the mn pairs (b, c) ∈ B + C, the only loss of distinct sums comes from a geometric family

ra0+jx+ rd0+jy = rb0+jx+ rc0+jy = rjw,

where w = ra0x+ rd0y, 0 < b0 + j ≤ a0 + j < m, 0 ≤ d0 + j < c0 + j < n, min{a0, b0, c0, d0} = 0, stemming
from the at most one solution of type (iii) with z = y/x. If w ̸= 0, then since a0, c0 ≥ 1 and max{a0, c0} ≥ 2,
we have p ≤ min{m− 2, n− 1} pairs of pairs, each collapsing to a different common sum, so |B +C| loses p
from its maximum value. If instead w = 0, we have p ≤ n pairs collapsing to the single sum 0, so |B + B|
loses p− 1 from its maximum value. In other words,

(12) |B + C| ≥ mn−min{m− 1− α, n− 1},

where α is as stated in the corollary. We illustrate the w ̸= 0 case below with one final m = n = 4 example.

1 3 9 27

4 12 36 108

Figure 4. An illustration showing that if B = {1, 3, 9, 27} and C = {4, 12, 36, 108}, then
the only elements of B+C with two distinct representations are 13 and 39, stemming from
the solution 9− 1 = 12− 4. In particular, |B + C| = (4)(4)− 2 = 14.

Substituting (9), (10), (11), and (12) into (2) yields the claimed lower bound on |A+A|. □

As with Lemma 3.5, the conclusion of Corollary 3.7 fails when r = 2, as seen by B = {1, 2, 4, 8, 16},
C = {3, 6, 12}.

3.2. The r ≥ 2 case. The following lemma makes precise the fact that a union of two geometric progressions
with the same common ratio r ≥ 2 determines many distinct sums based only on the rapid growth in the
terms. This is our one result in Section 3 that does not rely on the common ratio being a rational number.

Lemma 3.8. If A ⊆ (0,∞) with |A| = k is a union of two geometric progressions with the same common
ratio r ≥ 2, then

|A+A| ≥
⌈
(k + 1)2 + 3

4

⌉
.

Proof. Suppose A ⊆ (0,∞) with |A| = k is a union of two geometric progressions with the same common
ratio r ≥ 2. Write the elements of A in increasing order a1 < a2 < · · · < ak. Given any three consecutive
elements am−2, am−1, am, at least two must come from the same geometric progression, hence

am ≥ ram−2 ≥ 2am−2

for all 2 ≤ m ≤ k. Therefore, if k is even, then

{ak + a1, ak + a2, . . . , 2ak}, {ak−2 + a1, ak−2 + a2, . . . , 2ak−2}, . . . , {a2 + a1, 2a2}, {2a1}

are pairwise disjoint sets of distinct sums, and if k is odd, then

{ak + a1, ak + a2, . . . , 2ak}, {ak−2 + a1, ak−2 + a2, . . . , 2ak−2}, . . . , {a3 + a1, a3 + a2, 2a3}, {a1 + a2, 2a1}

are pairwise disjoint sets of distinct sums. The total number of distinct sums listed is

1 + 2

k/2∑
j=1

j = 1 +
k(k + 2)

4
=

(k + 1)3 + 3

4
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when k is even and

1 +
k + 1

2
+ 2

(k−1)/2∑
j=1

j = 1 +
k + 1

2
+

(k − 1)(k + 1)

4
=

(k + 1)2

4
+ 1

when k is odd, yielding the claimed lower bound in both cases. □

The right-hand side of Lemma 3.8 exceeds 3k − 2 for k ≥ 9, but is only 21 when k = 8. Fortunately, the
additional assumption that the common ratio is a rational number is enough to get us across the goalline.

Lemma 3.9. If A ⊆ (0,∞) with |A| = 8 is a union of two geometric progressions with the same rational
common ratio r ≥ 2, then |A+A| ≥ 22.

Proof. Suppose A ⊆ (0,∞) with |A| = 8 and A = B ∪ C, where B and C are geometric progressions of the
same common ratio r ∈ Q, r ≥ 2. Write the elements of A in increasing order a1 < a2 < · · · < a8. We are
guaranteed the 21 distinct sums listed in the proof of Lemma 3.8, the set of which we call S, so we must
identify one element of (A+A) \ S.
If there is some j ∈ {2, . . . , 7} such that aj , aj−1 are both in B or both in C, then aj + a1 /∈ S if j is
even and 2aj /∈ S if j is odd. Otherwise, we assume without loss of generality that a2, a4, a6, a8 ∈ B, while
a3, a5, a7 ∈ C. If a3 + a1 ̸= 2a2, then a3 + a1 /∈ S, as needed. Otherwise, a3 + a1 = 2a2, and we consider the
cases a1 ∈ B and a1 ∈ C.

If a1 ∈ B, then

(a1, a2, a3, a4, a5, a6, a7, a8) = (x, rx, y, r2x, ry, r3x, r2y, r4x)

with x, y > 0, and a3 + a1 = 2a2 gives y = (2r − 1)x. Substituting y = (2r − 1)x and comparing a7 + a1 to
each element of S that it could potentially equal, namely a6 + a2, a6 + a3, . . . , 2a6, we see that any match
yields a polynomial equation p(r) = 0 with no rational solution r ≥ 2. Thus, a7 + a1 /∈ S, as needed.

If a1 ∈ C, then

(a1, a2, a3, a4, a5, a6, a7, a8) = (y, x, ry, rx, r2y, r2x, r3y, r3x)

with x, y > 0, and a3 + a1 = 2a2 gives x = (y + ry)/2. The only element of S that could possibly equal
a3 + a2 is a4 + a1. However, assuming a3 + a2 = a4 + a1 and substituting x = (y+ ry)/2 yields (r− 1)2 = 0,
contradicting r ≥ 2. □

4. Concluding remarks

All cases in the conclusion of Theorem 3.3 have now been established, which in turn completes the
proofs of Corollary 3.4 and our main result Theorem 1.1. From here, a natural question is whether our
methods can be modified or supplemented to determine SP (10), or beyond. At the moment, this feels out
of reach. Based on both hand and computer searches, our best guess is that SP (10) = 30, as achieved
by A = {1, 2, 3, 4, 6, 8, 9, 12, 16, 18}, which has |A + A| = 30 and |AA| = 29. However, there is not a
characterization of the precision of Theorems 2.1 and 3.1 that can be applied to a set A ⊆ N with |A| = 10
and |A+A| or |AA| equal to 29. Some structural results beyond 3k − 3 have been established, for example
Jin [12] up to 3k − 3 + ϵk for some small ϵ > 0, and Eberhard, Green, and Manners [2] up to (4 − ϵ)k for
every ϵ > 0. However, these results require k to be sufficiently large, so they are, a priori, not useful for
our purposes. Development of new tools, or novel application of existing tools, to determine SP (k) for some
values of k > 9 could be an interesting endeavor for future work.
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