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Abstract. Suppose two friends are about to participate in a two-day contest in which they repeatedly
attempt a task with a clear success/failure outcome (such as shooting free throws on a basketball court).

We have no specific prior knowledge of the participants’ skills, how the change in day will impact their
success, or how many attempts they will take each day, so we suppose that each participant’s success rate

for day 1, success rate for day 2, and proportion of attempts that take place on day 1 are all chosen uniformly

at random between 0 and 1. What is the probability that the same person has a higher success rate each of
the two individual days, but the other person has a higher success rate for the two-day period? This can be

thought of as a prior probability of a simple case of Simpson’s paradox, and we show that this probability

is (π2 − 9)/36 = .0241556778 . . . .

1. Introduction

The following is a problem composed by the author, versions of which have been included in a variety of
math competitions at the middle school, high school, and collegiate levels:

Robbie and Julia compete in a two-day coin-flipping contest. Each day, each person flips
between 1 and 100 coins, inclusive. Each day, Robbie flips a higher proportion of heads
than Julia. For the two-day contest, Robbie flips R% heads, while Julia flips J% heads.
What is the least possible value of R− J , rounded to the nearest integer?

For the sake of the intrigued reader, we postpone the precise answer to the very end of the note, but the
key is to divorce oneself from the intuition that the answer must be nonnegative. The fact that R can be
less than J is a simple example of a broader statistical phenomenon known as Simpson’s paradox, in which
a statistical trend that exists in multiple sets of data is reversed when the sets are combined. The effect was
so-named by Blyth [1] in 1972 owing to its description by Simpson [7] in 1951, but analogous effects had
been described earlier by Pearson, Lee, and Bramley-Moore [5] and Yule [8].

But even if we accept the possibility that R can be less than J , how likely is such a scenario? The coin-flip
example could be constrained by the assumption that the coin is fair, or at least the same for each player
and the same on each day. Instead, we eschew such prior knowledge, and consider a two-day contest in
which two players repeatedly attempt a task with a clear success/failure outcome, and we suppose that each
participant’s success rate for day 1, success rate for day 2, and proportion of attempts that take place on day
1 are all chosen uniformly1 at random between 0 and 1. Under these assumptions, what is the probability
that the same person has a higher success rate each of the two days, but the other person has a higher
success rate for the two-day period? A geometric interpretation of the question is shown in Figure 1 below.

Similar questions have been considered previously, most notably by Pavlides and Perlman [4] who verified
a solution of Hadjicostas [2] to the following question: if outcomes are uniformly distributed amongst the
eight possibilities determined by the success or failure of three events A,B,C, what is the probability that A
and B are positively correlated conditioned on C, and positively correlated conditioned on C (where the bar
denotes the complement), but negatively correlated overall (or the analogous scenario with all correlations
reversed)? In this setting, the precise probability is 1/60. The likelihood of a similar formulation of Simpson’s
paradox in quantum mechanics is further discussed in Section 5 of [6].

1The motivating examples of free throws and coin flips suggest a binomial distribution is more appropriate than uniform.

However, rather than thinking of a player’s “skill level” (success probability on each independent trial) as fixed, we seek a prior
probability by averaging over all possible skill levels, and considering all possible sample sizes. In particular, we leave it as an
exercise that if f(δ,N, ϵ) denotes the probability of at most ϵN successes from N independent trials with probability δ, then

limN→∞
∫ 1
0 f(δ,N, ϵ)dδ = ϵ for every ϵ ∈ [0, 1].
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Figure 1. A geometric representation of the considered form of Simpson’s paradox, with
x = 0 corresponding to day 2 and x = 1 corresponding to day 1. While both blue endpoints
are higher than the respective red endpoints, the intermediate red point, whose height is
given by a convex combination of the two red endpoint heights, is higher than the interme-
diate blue point. The central question here is the likelihood of a configuration like this (or
with the colors reversed) if the four colored endpoint heights, followed by the two positions
along the two resulting line segments, are all chosen uniformly at random.

2. Main Computation

To begin with our formulation of the reversal phenomenon, suppose v = (p, p′, q, q′, r, s) ∈ [0, 1]6. We say
that v is a Simpson reversal if p > q, p′ > q′, and rp+(1− r)p′ < sq+(1− s)q′, or if the same system holds
with all inequalities reversed. Our central question is to determine the probability of a Simpson reversal,
provided all six of the defined probabilities are chosen uniformly at random between 0 and 1. For n ∈ N, we
let µn denote n-dimensional Lebesgue measure (since the sets we are working with are relatively nice, the
uninitiated reader can think of this as volume in the appropriate number of dimensions). Our main result,
the computation of the desired probability, is as follows.

Theorem 1. µ6

({
v ∈ [0, 1]6 : v is a Simpson reversal

})
=

π2 − 9

36
= 0.0241556778 . . .

The previous work that aligns most closely with our computation is that of Jones and Wilson [3], with the
novelty coming from our averaging over all possible choices of (p, p′, q, q′) to obtain a single prior probability.

Proof. Let S =
{
v ∈ [0, 1]6 : v is a Simpson reversal

}
. We first note that if (p, p′, q, q′, r, s) ∈ S with p > q

and p > p′, then we must have q > p′, otherwise any convex combination of p and p′ would exceed any
convex combination of q and q′. Further, the three maps sending (p, p′, q, q′, r, s) to (p′, p, q′, q, 1− r, 1− s),
(q, q′, p, p′, s, r) and (q′, q, p′, p, 1− s, 1− r), respectively, are measure-preserving bijections between

S1 = {(p, p′, q, q′, r, s) ∈ S : q′ < p′ < q < p}

and the analogous subsets of S defined by switching the roles of the “players” and/or the “days”. In
particular, µ6(S) = 4µ6(S1). Further the map (p, p′, q, q′, r, s) 7→ (1− q′, 1− q, 1− p′, 1− p, 1− s, 1− r) is a
measure-preserving bijection between

T = {(p, p′, q, q′, r, s) ∈ S1 : p− p′ > q − q′}

and the analogous subset of S1 with q − q′ > p− p′. Therefore, we have µ6(S1) = 2µ6(T ), hence

(1) µ6(S) = 8µ6(T ).
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Making the further measure-preserving changes of variables x = p − p′ and y = q − q′, α = 1/2 − r, and
β = s− 1/2 we have that T has the same measure as

T ′ = {(p, x, q, y, α, β) ∈ R6 : 0 < q − y < p− x < q < p < 1, x > y,

− 1/2 ≤ α, β ≤ 1/2, 2xα+ 2yβ > 2p− x− 2q + y},

where the final inequality is a rearrangement of the condition

(1/2− α)p+ (1/2 + α)(p− x) < (1/2 + β)q + (1/2− β)(q − y),

or equivalently

xα+ yβ >

(
p+ p′

2

)
−
(
q + q′

2

)
,

where the right-hand side is the vertical distance between the blue and red lines in Figure 1 at x = 1/2.

Crucially, for each fixed element of

T̃ =
{
(p, x, q, y) ∈ R4 : 0 < q − y < p− x < q < p < 1, x > y

}
,

we have

µ2

({
(α, β) ∈ [−1/2, 1/2]2 : 2xα+ 2yβ > 2p− x− 2q + y

})
=

1

4xy
· µ2

(
T(p,x,q,y)

)
,

where T(p,x,q,y) = {(u, v) ∈ [−x, x]× [−y, y] : u+ v > 2p− x− 2q + y}, as shown in the figure below.

Figure 2. For fixed (p, x, q, y) ∈ T̃ , the blue region is T(p,x,q,y), which has area 2(q−p+x)2.

This figure is effectively equivalent to Figure 2 in [3]. Dividing 2(q−p+x)2 by 4xy, the area
of the larger rectangle, gives a probability equivalent to the conclusion of the proposition
on page 296 of that paper.

Combining this with (1), we have

(2) µ6(S) = 8

∫∫∫∫
T̃

1

4xy
· µ2

(
T(p,x,q,y)

)
dqdpdydx = 4

∫∫∫∫
T̃

(q − p+ x)2

xy
dqdpdydx.

We partition T̃ into three pieces: T̃1 = {(p, x, q, y) ∈ T̃ : p > x+ y}, T̃2 = {(p, x, q, y) ∈ T̃ : p < x+ y < 1},
and T̃3 = {(p, x, q, y) ∈ T̃ : x+ y > 1}. Let R = {(x, y) ∈ R2 : x > y > 0, x+ y < 1}. Then, we have
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∫∫∫∫
T̃1

(q − p+ x)2

xy
dqdpdydx =

∫∫
R

∫ 1

x+y

∫ p−x+y

p−x

(q − p+ x)2

xy
dqdpdydx

=
1

3

∫∫
R

1− x

x
y2 − y3

x
dydx.

In order to save the dx integration for last, we decompose the integration over R as∫∫
R

(·)dydx =

∫ 1/2

0

∫ x

0

(·)dydx+

∫ 1

1/2

∫ 1−x

0

(·)dydx,

and we encourage the reader to integrate away the first three variables and verify that

(3)

∫∫∫∫
T̃1

(q − p+ x)2

xy
dqdpdydx =

1

36

(
11

192
+ I1

)
, where I1 =

∫ 1

1/2

(1− x)4

x
dx,

(4)∫∫∫∫
T̃2

(q − p+ x)2

xy
dqdpdydx =

∫∫
R

∫ x+y

x

∫ p−x+y

y

(q − p+ x)2

xy
dqdpdydx =

1

4

∫∫
R

y3

x
dydx =

1

1024
+

1

16
I1,

and

(5)

∫∫∫∫
T̃3

(q − p+ x)2

xy
dqdpdydx =

∫ 1

1/2

∫ x

1−x

∫ 1

x

∫ p−x+y

y

(q − p+ x)2

xy
dqdpdydx =

1

12
I2,

where

I2 =

∫ 1

1/2

(x− 1)4 log
(

x
1−x

)
+ 4(x− 1)3(2x− 1) + 3(x− 1)2(2x− 1)

x
dx

is a convergent improper integral. Having reduced matters to single integrals, we find (with computer
assistance, verified by hand) that

(6) I1 = log 2− 131

192
, I2 =

π2

12
− 13 log 2

12
− 1

24
.

Combining (2)-(6), we have µ6(S) = 4

(
11

36 · 192
+

1

1024
+

(
1

36
+

1

16

)
I1 +

1

12
I2

)
=

π2 − 9

36
, as claimed.

□

3. Concluding Remarks

For the patient reader, we now return with the answer to the problem posed at the very beginning of
the introduction. Up to the ordering of the days, the most extreme scenario is as follows. Day 1: Robbie
flips 1/1 head, while Julia flips 99/100 heads. Day 2: Robbie flips 1/100 heads, while Julia flips 0/1
heads. By percentage, Robbie wins both days, but for the two-day period, R = 100 ∗ (2/101) ≈ 1.98, while
J = 100 ∗ (99/101) ≈ 98.02. This gives a minimum value for R− J , rounded to the nearest integer, of −96.

Regarding future directions, the calculation provided in this note could, with sufficient patience and care,
be generalized with respect to the number of days or number of players. It would also be interesting to

provide a more intuitive, perhaps geometric explanation for the final answer π2−9
36 = π+3

6 · π−3
6 .
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